
Extensible Grouping and Aggregation
for Data Reconciliation ?

Eike Schallehn, Kai-Uwe Sattler, and Gunter Saake

Department of Computer Science
University of Magdeburg

P.O.Box 4120, 39016 Magdeburg, Germany
feike|kus|saake g@iti.cs.uni-magdeburg.de

Abstract. New applications from the areas of analytical data processing and data
integration require powerful features to condense and reconcile available data.
Object-relational and other data management systems available today provide
only limited concepts to deal with these requirements. The general concept of
grouping and aggregation appears to be a fitting paradigm for a number of the
mentioned issues, but in its common form of equality based groups and restricted
aggregate functions a number of problems remain unsolved. Various extensions
to this concept have been introduced over the last years, especially regarding
user-defined functions for aggregation and derivation of grouping properties. We
propose generic interfaces for user-defined grouping and aggregation as part of a
SQL extension, allowing for more complex functions, for instance integration of
data mining algorithms. Furthermore, we discuss high-level language primitives
for common applications and illustrate the approach by introducing new concepts
for similarity-based duplicate detection and elimination.

1 Introduction

Over the last years a number of new applications with the common characteristic of
condensation and integration of large data sets have gained focus in research and prac-
tice. This includes the integration of information systems, mainly driven by growing
numbers of sources of related information in a global scope like the WWW or in more
local scenarios like various departments of a company. More than just making this in-
formation available via a uniform interface, inconsistencies and redundancy on the data
level have to be removed, and very often only condensed views of the data are required.
Similar requirements exist for preparing data for data warehouses, and, later on, analyt-
ical processing steps like data mining and online analytical processing. Other examples
include information dissemination, i.e. preparing data from various subscribed infor-
mation channels, and the problem of homogenization of data in communicating mobile
systems.

A common problem in the mentioned application scenarios is the elimination of
duplicate data objects, very likely having conflicting identifiers and attribute values.
Such duplicates may exist redundantly in various systems, due to errors during input or
? This research was partially supported by the BMBF (08SFB031)

for other reasons. For instance, when a user is looking for publications from integrated
digital libraries, he may want to have a single representation of one article and a list
of possible sources for it as part of the integrated view. Though duplicate elimination
is used as an example throughout this paper, the proposed approach is usable for a
variety of other issues, including for instance preparation of data for data warehouses,
the generation of histograms and new opportunities for analytical data processing.

To integrate these features with current database technology we propose a flexi-
ble approach based on generalized concepts for grouping and aggregation. While, in
its current form, this paradigm is limited to equality based grouping and restricted ag-
gregate functions, it can be a powerful operation if extended to support more complex
intra-group relationships and advanced aggregate functions.

The great number of possible applications and the possibly very complex group-
ing and aggregation functions raise the question, on what level the extensions should
be implemented. While we present a solution based on user-defined functions, we also
discuss possible language extensions and implementation alternatives. We do not intend
to finally answer the question, what the better approach would be, but instead describe
the trade off of criteria that motivated our current implementation. The extensions pre-
sented in this paper are implemented in our multidatabase query language FRAQL.
This language provides powerful query operations addressing problems of integration
and transformation of heterogeneous data [20] and therefore, it is a suitable platform
for building up a framework for data preparation and integration.

In section 2 we give an overview of relevant related work from the fields of extended
query processing as well as the field of similarity-based duplicate detection and elim-
ination. In section 3 we give a more detailed description of existing problems and the
motivation for the used approach. As a basis of the current implementation user-defined
aggregation and grouping functions as supported by FRAQL are introduced in section
4. Section 6 describes application scenarios and a discussion about possible implemen-
tation alternatives is given in 7. The paper ends with a conclusion and an outlook in
section 8.

2 Related Work

The approach described in this paper is intended to be used in data integration scenar-
ios. Related topics are from this field, especially concerning the running example of
entity identification, as well as advanced concepts for grouping and aggregation that
are relevant in research fields like analytical data processing.

Throughout the paper we illustrate our approach by focusing on the problem of en-
tity identification and duplicate elimination. This problem was discussed extensively
in various research areas like database and information system integration [24, 17],
data cleaning [1, 7], information dissemination [23], and others. Early approaches were
merely based on the equality of attribute values or derived values. Newer research re-
sults deal with advanced requirements of real-life systems, where identification very
often is only possible based on similarity. Those approaches include special algorithms
[18,?], the application of methods known from the area of data mining and even ma-

chine learning [16]. Other interesting results came from specific application areas, like
for instance digital libraries [8, 14].

An overview of problems related to entity identification is given in [15]. In [17] Lim
et. al. describe an equality based approach, include an overview of other approaches
and list requirements for the entity identification process. Monge and Elkan describe
an efficient algorithm that identifies similar tuples based on a distance measure and
builds transitive clusters in [19]. In [7] Galhardas et. al. propose a framework for data
cleaning as a SQL extension and macro-operators to support among other data cleaning
issues duplicate elimination by similarity-based clustering. The similarity relationship
is expressed by language constructs, and furthermore, clustering strategies to deal with
transitivity conflicts are proposed. In [12] Hern´andez et. al. propose the sliding window
approach for similarity-based duplicate identification where a neighbourhood conserv-
ing key can be derived and describe efficient implementations.

Closely related to similarity based entity identification is the integration of proba-
bilistic concepts in data management [4, 6]. Especially, for data integration issues and
the aforementioned problems probabilistic approaches were verified and yielded use-
ful results [21, 13]. The WHIRL system and language [3] by Cohen uses text-based
similarity and logic-based data access as known from Datalog to integrate data from
heterogeneous sources.

The importance of extended concepts for grouping and aggregation in information
integration is emphasized by Hellerstein et. al. in [11]. In particular, user-defined aggre-
gation (UDA) were proposed in SQL3 and are now supported by several commercial
database systems, e.g. Oracle8i, IBM DB2, Informix. In [22] the SQL-AG system for
specifying UDA is presented, that translates to C code. A more recent version of this
approach called AXL is described in [22] and its usage in data mining is discussed.

Several extensions to the classicgroup by -operator of SQL were proposed. Prob-
ably the most important extension is the data cube operator presented in [10], which is
now support in some commercial systems. In [2] an additionalsuch that -clause for
thegroup by -operator is proposed introducing variables that range over a group and
can be qualified by thesuch that -clause. Red Brick’s RISQL (now Informix) al-
lows functions in thegroup by -clause and supports several predefined aggregation
functions, e.g.Rank, N tile , as well as cumulative aggregates. Some other OLAP
vendors provide similar concepts.

3 Motivation

In this section we informally introduce our approach for extended grouping and aggre-
gation and describe problems with the common standard and proposals for extensions
made over the last years. To illustrate the motivation behind our concepts we focus
on the problem of duplicate elimination, that is common in many of the applications
mentioned above. Anyway, the approach is not limited to this specific problem. Other
applications are introduced in section 6.

While equality based duplicate elimination is a standard feature of object-relational
DBMS, for the scenarios mentioned in section 1 more sophisticated solutions are re-
quired to deal with possible inconsistencies and different representation conventions

D
D

...

A B C

DE

B D
F G

A B
F G

B
B
B

G
G

A
A

F
F

C

E

A B

C D

E
F G

n

nn

n

1
1 1

11

2

2

2

2

1
n

2

1

n

2

n

1

2

2

n

1

1

r r

r
r

r

r
r} }

Entity Identification Reconcilation

Fig. 1. Similarity based duplicate elimination

that are typical in heterogeneous environments. Furthermore, we assume that other
conflicts, for instance regarding data models and structures, are resolved beforehand.
The proposed approach was implemented as part of the FRAQL system that provides
features to deal with these conflicts and is described in more detail in [20].

Similarity-based duplicate elimination can be considered a two-step process as il-
lustrated in figure 1 consisting of entity identification and reconciliation. Duringentity
identificationgroups of objects potentially describing the same real-world object are
created. We have to keep in mind that whatever similarity criterion and strategy we
choose, this step can only derive hypotheses about the relationship and will remain
error-prone. The number of over-identified (unrelated entities in one group) and under-
identified (related entities in separate groups) tuples derived from sample data and eval-
uated by a user with domain knowledge can be used as a quality measure to tune this
step during the design phase.

Theentity reconciliationstep uses the groups found during entity identification as
an input to derive one integrated representation for the real-world object represented by
this group. This can be done by merging data, e.g. sum up the sales numbers of products
from various business areas, or by using additional knowledge about the integrated
data, like for instance data quality. So, user-defined aggregation functions appear as an
appropriate concept for reconciliation tasks.

Both steps are highly application-dependent, i.e. to support similarity based dupli-
cate elimination a system has to provide concepts to describe the characteristics of both
steps. We will later on discuss on which levels this requirement can be addressed. Cur-
rent database technology and languages do not offer sufficient solutions to support such
operations. However, the general concept of grouping and aggregation can be used as
a powerful framework to handle these and other integration issues. In the following we
will describe shortcomings of the existing operations and required extensions.

Currently thegroup by -operator as standardized is equality based and works one
tuple at a time, i.e. the identifier of the group the tuple belongs to is derived considering
only values of one tuple and no implicit or explicit relationships between tuples. This is
also true for current extensions allowing user-defined functions as agroup by clause
to derive values that are not in the domain of any of the relations attributes. New ap-
plications introduced in section 1 require a more flexible, more general approach. As

(a) (b)

Fig. 2. Grouping by (a) transitive and (b) strict similarity

an example consider the following query that performs similarity-based duplicate elim-
ination for bibliographic records from three sources by describing a pairwise similarity
criterion and a strategy to build groups.

select pickBySource(title,source),
fullName(author)

from DBLP union SPRINGER union NCSTRL
group by transitive similarity
on sameText(title) and

sameName(author) or
isbn

threshold 0.95

The similarity criterion is specified in theon-clause by a probabilistic logic expres-
sion using system-defined (sameText) and user-defined (sameName) functions tak-
ing advantage of domain knowledge. System-defined methods can for instance be used
for common data types without taking advantage of knowledge about the application-
dependent semantics of the given attribute. As an example we consider string attributes,
where either vector representations and according distance measures for longer text
fields like the title or the edit distance to deal with typos etc. in shorter string represen-
tations can be applied. The user-definedsameName-function in this case can exploit
domain knowledge, like the fact that first names are often abbreviated or names can be
written “Lastname, Firstname”. These functions can be implemented as two-parameter
functions for comparing values from two tuples and return float values between 0 and
1 derived from the distance measure. The usage of an attribute, likeisbn in the ex-
ample, compares two values for equality and returns either 0 or 1. The expression can
be evaluated applying the MIN/MAX combination rule, i.e. for two tuplest1 andt2 a
similarity value can be derived as follows:

sima(t1; t2) := t1:a = t2:a

simf(a)(t1; t2) := f(t1:a; t2:a)

simA^B(t1; t2) :=MIN(simA(t1; t2); simB(t1; t2))

simA_B(t1; t2) :=MAX(simA(t1; t2); simB(t1; t2))

sim
:A(t1; t2) := 1� simA(t1; t2)

Two tuples are pairwise similar if the evaluated logic expression is above the specified
threshold. The similarity relationship is intransitive, hence, a further strategy to estab-
lish an equivalence relation is required to build groups.

Two simple strategies are introduced here and illustrated in figure 2, their usefulness
depending on a given application scenario. Thetransitive closure strategy used in
the example above builds groups by simply considering the transitive closure of a tuple
as its group. This is a very loose strategy that may result in big groups with potentially
very different tuples. A more conservative strategy would be thestrict similar-
ity , that demands pairwise similarity between all tuples within a group and splits the
group in case of a conflict.

There is an unlimited number of possible strategies that might become useful in
specific applications, especially when other similarity relationships are considered or
approaches like clustering or classification are used. Anyway, they all share the common
characteristic that the result of the grouping process may depend on the whole input
relation, i.e. represents a holistic function.

Though the query example shown above describes a declarative way to express the
duplicate elimination, the current implementation is based on the more general con-
cept of user-defined grouping functions and aggregation as introduced in section 4. A
discussion of advantages and possible problems regarding language constructs versus
user-defined grouping functions is given in section 6.

4 User-defined Grouping and Aggregation

Obviously, using grouping for duplicate identification and aggregation for reconcilia-
tion depends heavily on the problem domain. Additionally, only in rare cases simple
built-in aggregation functions are sufficient for reconciliation purposes. Therefore, it
is necessary to support application-specific grouping and aggregation functions, i.e.,
user-defined functions. Whereas user-defined aggregation (UDA) is considered in the
current SQL standard documents and already supported by commercial database sys-
tems like Informix, Oracle8i or IBM DB2, to our best knowledge user-defined grouping
(UDG) was not addressed until now. SQL allows only simple grouping by attributes and
only some proposed OLAP extensions to SQL enable at least the usage of predefined
functions as grouping parameter.

Our query language FRAQL supports both concepts: UDA and UDG. A UDA is
implemented in FRAQL as an external class written in C++ or Java. The interface of
this class consists of the following methods:

public interface UDA f
void init ();
boolean iterate (Object[] args);
Object result ();

g

At the beginning of processing a relation, the methodinit is called. For each tuple
the iterate method is invoked. The final result is obtained via the methodresult .

Because a UDA class is instantiated once for the whole relation the “state” of the ag-
gregate can be stored. Therefore, UDA functions can be used for reconciliation, i.e.,
deriving a representative value from a group of values representing the same real-world
concept.

Regarding user-defined grouping we have to distinguish two cases. If the assignment
of a tuple to a group is based on equality of attribute values, only one tuple at a time
has to be considered, because the group membership can be computed only from the
attribute values. In contrast, if we want to assign a tuple to a group based on attribute
similarity, it has to be compared to all current members of a group (or at least to one
representative) and to all groups. Depending on this comparison we can decide on the
group membership.

This difference in grouping is addressed by two modes: context-free and context-
aware grouping.Context-freegrouping is the usual approach as known from SQL.
FRAQL extends this by enabling arbitrary expressions as grouping parameter. So, user-
defined grouping can be implemented as an expression including the invocation of ex-
ternal functions, which may be defined as follows:

create function regionCode
(float, float) returns integer

external name ’RegionCode’
language Java

An example of using a UDF for grouping is the following query that groups tuples
representing weather measurements by regions. The region is computed from the geo-
graphical position with the help of the UDFregionCode :

select avg(temperature), rc
from Weather
group by regionCode (longitude,

latitude) as rc

Similarity-based grouping is supported in FRAQL ascontext-awaregrouping. Here the
problem is, that the group membership of a tuple can be determined not until all tuples
of the relation are processed. Furthermore, as discussed in section 3 groups are not
constant during processing a relation, because groups could be split or merged due to
similarity relationships of new tuples. So, UDG functions are implemented as classes
with the following interface:

public interface UDG f
void init (Object[] args);
boolean iterate (long tid,

Object[] values);
void finish ();
void groupOpen ();
long groupNext ();
void tupleOpen (long gid);
long tupleNext (long gid);

g

The meaning of these methods is as follows, whereas the processing is performed in two
steps. Starting in the first step with a new input relation theinit method is called for
initialization purposes. Then, each tuple is processed by invoking theiterate method
and finally thefinish method is called. Beforefinish the group partitioning can
change, but afterfinish was called, the number of groups as well as the assignment
of tuples are fixed. In the second step, projection and aggregation are applied to the in-
dividual groups. For this purpose, a UDG provides iterator-like methods for navigating
over the groups and contained tuples. The following example illustrates the principle
of a UDG function. The grouping function used in this example builds groups of tuples

A B
1.0 a
1.1 b
2.0 c
2.1 d
2.2 c
3.7 a

�!

A B
1.0 a
1.1 b
2.0 c
2.1 d
2.2 c
3.7 a

Fig. 3.Grouping example formaximumDifference

with no gaps in the float values of column A greater than0:5. The according implemen-
tation is a special case of computing a transitive closure similar to the algorithm given
later on in section 6. Because of the simple ‘similarity measure’ there are more efficient
implementations for this special case. Anyway, it is obvious that the UDG needs not to
store the whole tuple, but only a tuple id, which can be used for retrieving the actual
tuple during the second step.

The special treatment of context-aware grouping is expressed by the additional key-
wordcontext in thegroup by clause:

select avg(A),min(B)
from FloatMap
group by context

maximumDifference(A,diff = 0.5)

Context-aware grouping provided by FRAQL is not a direct implementation of sim-
ilarity grouping described in the motivating example in section 3. However, it forms a
generic framework for implementing this kind of grouping as well as other approaches
like clustering, which we will describe later.

5 Semantics and Implementation

In this section we sketch the semantics of our proposed operations. We extend the stan-
dard relational algebra with a generalized grouping operator
�; where� is a grouping
function and is a reconciliation function. Figure 4 illustrates the application of this

operation. An input relation consisting of two columnsA andB has to be grouped by
similar values ofA. This results in two groupsg1 andg2. For each of these groups the
reconciliation function avg(A);min(B) derives a single tuple (avg (A), min (B)). First of

A B
1.0 a
1.1 b
2.0 c
2.1 d
2.2 c

�
�!

A B

g1
1.0 a
1.1 b

g2

2.0 c
2.1 d
2.2 c

�!

A B
1.05 a
2.1 c

Fig. 4. Application of
 and

all, for the grouping operator a “same-group” function� is required. Assumingr(R) as
a relation of schemaR, we can define the signature of� as follows:

� : r(R)� r(R)! bool

where it holds�(t1; t2) = �(t2; t1). This function is applied on two tuples at a time and
returnstrue if the tuples are similar, i.e. belonging to the same group. If we consider
holistic functions the test for membership in the same group has to be performed in the
context of the whole relation. Therefore, an extended version� is necessary, where the
function depends on the relation as a whole:

�r(R) : r(R) � r(R)! bool

As an example for this kind of functions consider the computation of the transitive
closure as part of a binary similarity operator.

Based on a group function we can next define the grouping operator
� as follows:

� : r(R)! 2r(R)

where

�(t1) =
�(t2) iff �(t1; t2) = true

A reconciliation function has the signature

 : 2r(R)
! r(R)

and consists of a list of aggregate functions either built-in likeavg , min , max etc. or
user-defined as introduced in section 4. The resulting tuples have the same tuple type as
the input relation. So, this function denotes a reconciliation grouping. For the general
case, has the following signature:

 : 2r(R)
! r(R0)

Using both same-group function� and reconciliation function we can finally
define the grouping operation:

�; (r) = (
�(r))

pc12.wpi.edu

pc12.wpi.edu

pc12.wpi.edu

pc12.wpi.edu

pc12.wpi.edu

pc12.wpi.edu

port80.dokom.de

port80.dokom.de

2000 12 15 13 51

2000

2000

2000

2000

2000

2000

2000

12

12

12

12

12

12

12

15

15

15

15

15

15

15

13

13

13

23

14

23

14

52

59

59

10

11

22

23

...

...

...

...

...

...

S
lid

in
g

W
in

do
w

Session

userURL numHits avgDwell

pc12.wpi.edu

pc12.wpi.edu 12

4 2.66

port80.dokom.de 2 1

...

pc12.wpi.edu

pc12.wpi.edu

pc12.wpi.edu

pc12.wpi.edu

port80.dokom.de

port80.dokom.de

pc12.wpi.edu

pc12.wpi.edu

...

index.html

index.html

index.html

index.html

guestbook.cgi

news.html

contact.html

news.html

15.12.2000 - 13:51

15.12.2000 - 13:52

15.12.2000 - 13:59

15.12.2000 - 13:59

15.12.2000 - 14:22

15.12.2000 - 14:23

15.12.2000 - 23:10

15.12.2000 - 23:11

... ...

target

WWWLog

userURL time

Fig. 5.Using the sliding window approach to analyse WWW logs

6 Applications

The concepts introduced in the last sections allow for arbitrary grouping and aggrega-
tion functions. In this section we discuss some applications and related implementation
issues. Let us first consider the example of similarity-based duplicate elimination as
introduced in section 3, where groups are build using the transitive closure strategy. A
general implementation framework for a UDG applying the transitive closure strategy
with quadratic time complexity can be sketched as follows:

UDG: transitiveSimilarity

init():
initialize grouptable as hash table

iterate(tuple id, values):
for all groups in grouptables

for all tuples in group
if tuples are similar

if already found another group
merge groups
add tuple

elseadd tuple
endfor

endfor
if no group found

create new group in grouptable
add tuple to new group

finish():
finished = true

For each tuple theiterate -method of the UDG is called and checks for similar tuples
in all existing groups using a nested loop and builds groups according to the strategy.
This way a function representing the similarity criterion given in section 3 can be used
in a query as follows:

select pickBySource(title,source),
fullName(author)

from DBLP union SRINGER union NCSTRL
group by context

transitiveSimilarity(isbn,title,
author,0.95)

The time complexity for the nested loop can be impractical in scenarios where large
input sets are the common case, like for instance when removing duplicates during the
data cleaning step for data warehousing.

Without describing the details of the similarity criterion and its implementation for
this case, it is obvious that there is potential for optimization. Using index structures
supporting similarity and application domain knowledge the common complexity for
duplicate elimination ofO(n logn) can be achieved in certain scenarios.

In the following simple example a web server access log is queried to derive in-
formation about “user sessions”, i.e. the period of time a user spends to continuously
browse pages on this server. If the time difference between two hits exceeds a certain
limit, the session has ended.

select count(*), avgDwell(time)
from WWWLog
group by context

sameSession (userURL,
time,maxDiff=30)

The sameSession grouping function can use the neighbourhood conserving ap-
proach described in [12] and illustrated in figure 5 by using the guest URL as well as
extracted year, month, day etc. as a key. This way an order is established and the sliding
window approach can be applied to check if the difference of time between hits exceeds
the limit of 30 minutes. For the sliding window approach only tuples within a window
of a size greater than the number of the maximum expected tuples within a group are
compared to each other. This is possible with constant time complexity. The moving of
the window has linear complexity, so, including the sorting the overall grouping process
has a complexity ofO(n logn). This approach, though quite efficient, can only be used
if a meaningful key for a neighbourhood conserving order can be derived.

Using user-defined grouping and aggregation functions is a simple way to integrate
clustering algorithms and make use of them in database environments. The following
example uses DBSCAN [5] to build density based clusters of locations.

select biggestCity(name,occupation),
avg(precipitation)

from meteoDat natural join locations
group by context

DBSCAN(longitude,latitude,
minNeigh = 2, eps = 100)

The query returns a representative city for each cluster and the average precipitation in
the area.

The extended grouping functionality described here also offers new options to con-
dense data for online analytical processing. The overall concept fits well with new
extensions made to the SQL standard to support the generation of multidimensional
views. Using clustering or, more generally speaking, similarity-based grouping at this
level helps to make implicit dependencies and relationships obvious more easily.

7 Alternatives and Implications

Considering the motivating query from section 3 containing agroup by similar-
ity clause and the proposedgroup by context extension the question arises,
which is the better approach ?

A dedicated solution for similarity-based grouping opens the possibility to apply
special optimization strategies. For example, the grouping operator could benefit from
special-purpose index structures on grouping attributes, e.g., inverted lists. Furthermore,
the development of predicates used in the grouping clause is simplified, because only
the similarity criterion for two attributes values has to be implemented. However, this
approach is limited to the domain of similarity. Other grouping techniques like cluster-
ing of non-textual data would require other extensions.

A more generalized solution like the proposed approach of context-aware grouping
opens a broader range of applications. The disadvantage is the higher complexity of
developing grouping functions. All the tasks of group membership checking as well as
merging and splitting groups are burden to the implementer. Anyway, we argue for this
solution because of several reasons:

– Text-similarity grouping can be implemented on top of the context-aware grouping,
but not vice versa.

– Though grouping as well as grouping functions are often application-dependent,
common functions could be implemented and packaged as a database cartridge or
extender, as already available in modern database systems.

– Using SQL/PSM or at least a kind of embedded SQL simplifies the development of
aggregation and grouping functions. In addition, this makes the implementation of
these functions transparent to the query processor and allows the inclusion in the
query optimization process.

Particularly the latter issue is subject of our future work.

8 Conclusions

In this paper we have presented two extensions to a SQL-like query language address-
ing advanced requirements regarding data reconcilation in integration scenarios. The
group-by-context clause provides a mechanism for applying user-defined func-
tions for grouping purposes. The merging or reconciliation of the tuples of the identified
groups is performed via aggregation functions. Both features together form a powerful
framework for data reconciliation as part of extended SQL queries which can be applied
in various application scenarios. Additionally, it improves the extendible of database

systems and could be utilized in database extenders or cartridges. The presented exten-
sions are implemented as part of our federated query engine for the FRAQL language.
In the context of a multidatabase language concepts for advanced data reconciliation
are particularly useful.

In the future, we plan to use SQL for implementing grouping and aggregation func-
tions in order to support a more declarative way for specifying these functions and to
establish a basis for optimizing grouping queries together with queries as part of the
functions. A second important task is to utilize the optimization potential during the
context-aware grouping, i.e. the mentioned sliding window approach, dedicated index
structures for text-based similarity or caching and parallelization. For this purpose the
properties and requirements of UDA and UDG functions have to be specified and taken
into account during query optimization and evaluation.

References

1. D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach
to data integration and reconciliation in data warehousing. InProceedings of the Interna-
tional Workshop on Design and Management of Data Warehouses (DMDW’99), Heidelberg,
Germany, 1999.

2. D. Chatziantoniou and K.A. Ross. Querying multiple features of groups in relational
databases. In T.M. Vijayaraman, A.P. Buchmann, C. Mohan, and N.L. Sarda, editors,Proc.
of 22th Int. Conf. on Very Large Data Bases (VLDB’96), Mumbai (Bombay), India, pages
295–306. Morgan Kaufmann, 1996.

3. W. Cohen. Integration of heterogeneous databases without common domains using queries
based on textual similarity. In L. M. Haas and A. Tiwary, editors,SIGMOD 1998, Pro-
ceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA, pages 201–212. ACM Press, 1998.

4. D. Dey and S. Sarkar. A probabilistic relational model and algebra.ACM Transactions on
Database Systems, 21(3):339–369, September 1996.

5. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In E. Simoudis, J. Han, and U.M. Fayyad,
editors,Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD-96),
pages 226–231. AAAI Pres, 1996.

6. N. Fuhr. Probabilistic datalog – A logic for powerful retrieval methods. InProceedings of
the Eighteenth Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Retrieval Logic, pages 282–290, 1995.

7. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: an extensible data cleaning
tool. In Weidong Chen, Jeffery Naughton, and Philip A. Bernstein, editors,Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
volume 29(2), pages 590–590, 2000.

8. C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An automatic citation indexing sys-
tem. InDL’98: Proceedings of the 3rd ACM International Conference on Digital Libraries,
pages 89–98, 1998.

9. G. Graefe. Query Evaluation Techniques For Large Databases.ACM Computing Surveys,
25(2):73–170, 1993.

10. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-total. In S.Y.W. Su, editor,Proceedings
of the 12th Int. Conf. on Data Engineering (ICDE’96), New Orleans, Louisiana, pages 152–
159. IEEE Computer Society, 1996.

11. J. M. Hellerstein, M. Stonebraker, and R. Caccia. Independent, Open Enterprise Data Inte-
gration. IEEE Data Engineering Bulletin, 22(1):43–49, 1999.

12. M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In
Michael J. Carey and Donovan A. Schneider, editors,Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data, pages 127–138, San Jose, Califor-
nia, 22–25 May 1995.

13. S. B. Huffman and D. Steier. Heuristic joins to integrate structured heterogeneous data. In
AAAI Spring Symposium on Information Gathering, 1995.

14. J. A. Hylton. Identifying and merging related bibliographic records. Technical Report
MIT/LCS/TR-678, Massachusetts Institute of Technology, February 1996.

15. W. Kent. The breakdown of the information model in multi-database systems.SIGMOD
Record, 20(4):10–15, December 1991.

16. Wen-Syan Li. Knowledge gathering and matching in heterogeneous databases. InAAAI
Spring Symposium on Information Gathering, 1995.

17. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database in-
tegration. InInternational Conference on Data Engineering, pages 294–301, Los Alamitos,
Ca., USA, April 1993. IEEE Computer Society Press.

18. A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and applications. In
Evangelos Simoudis, Jia Wei Han, and Usama Fayyad, editors,Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96), page 267.
AAAI Press, 1996.

19. A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. InProceedings of the Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD’97), 1997.

20. K.-U. Sattler, S. Conrad, and G. Saake. Adding Conflict Resolution Features to a Query
Language for Database Federations.Australian Journal of Information Systems, 8(1):116–
125, 2000.

21. F. Tseng, A. Chen, and W. Yang. A probabilistic approach to query processing in hetero-
geneous database systems. InProceedings of the 2nd International Workshop on Research
Issues on Data Engineering: Transaction and Query Processing, pages 176–183, 1992.

22. H. Wang and C. Zaniolo. Using sql to build new aggregates and extenders for object- re-
lational systems. In A. El Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors,Proc. of 26th Int. Conf. on Very Large Data Bases
(VLDB’00), Cairo, Egypt, pages 166–175. Morgan Kaufmann, 2000.

23. T. W. Yan and H. Garcia-Molina. Duplicate removal in information dissemination. InPro-
ceedings of the 21st International Conference on Very Large Data Bases (VLDB ’95), pages
66–77, San Francisco, Ca., USA, September 1995. Morgan Kaufmann Publishers, Inc.

24. G. Zhou, R. Hull, R. King, and J. Franchitti. Using object matching and materialization to
integrate heterogeneous databases. InProc. of 3rd Intl. Conf. on Cooperative Information
Systems (CoopIS-95), Vienna, Austria, 1995.

