
AspectC++: Language Proposal and Prototype
Implementation �

[Position Paper, Category A]

Andreas Gal, Wolfgang Schröder-Preikschat, and Olaf Spinczyk
University of Magdeburg

Universitätsplatz 2
39106 Magdeburg, Germany

fgal,wosch,olafg@ivs.cs.uni-magdeburg.de

ABSTRACT
The success of aspect-oriented programming (AOP) raises
and falls with user-friendly tool support. With AspectJ1

the �rst complete and powerful language extension for AOP

has been created. With this paper we intend to extend the
AspectJ approach to C/C++. We will present and discuss a
proposal for a set of language extensions we call AspectC++
to facilitate aspect-oriented programming with C/C++ and
we will illustrate our prototype implementation of a compiler

for this new language.

1. MOTIVATION
While there is currently a heavy focus on aspect-oriented
programming (AOP) with Java2, other languages like C
and C++ experience far less attention in the e�ort of creat-

ing and establishing extensions for aspect-oriented program-
ming. This is especially dissatisfying as a large fraction of
applications is still being developed in C and C++. These
applications cannot simply be considered as legacy, as for
a number of domains speci�c features of the C/C++ lan-
guage like minimal requirements in terms of run-time sup-

port are crucial. To be able to exploit the advantages of
aspect-oriented programming (AOP) also with C/C++, it
is inevitable to provide an AOP framework.

A key component of such a framework is a set of language
extensions to support the independent implementation of

aspects. AspectJ [6] is an example for such a set of lan-
guage extensions for the Java language. The popularity

�This work has been partly supported by the German Re-
search Council (DFG), grant no. SCHR 603/1-1 and SCHR
603/2.
1AspectJ is a trademark of Xerox Corporation.
2Java is a registered trademark of Sun Microsystems, Inc.
in the U.S. and other countries.

of AspectJ was supported by the fact that a working As-
pectJ compiler is publicly available and many programmers
already gathered experience with aspect-oriented program-
ming using AspectJ. As C++ and Java have grammatically
and semantically a lot in common, it seems natural to use

AspectJ as foundation when creating a set of extensions for
the C/C++ language to support aspect-oriented program-
ming.

In this paper we will present such an extension to the C++

language, called AspectC++. While AspectC++ is concep-
tually very similar to AspectJ, it was also necessary to adopt
and streamline what we learned from AspectJ accordingly
to the speci�c peculiarities of the C/C++ syntax and se-
mantics.

The outline of this paper is as follows: In section 2 we will
describe in detail the AspectC++ language and the di�er-
ences to AspectJ. Following in section 3 the architecture of
our prototype implementation of an AspectC++ compiler is
explained. Related work is discussed in section 4, followed
by the conclusions and a road map of our future work in

section 5.

2. THE ASPECTC++ LANGUAGE
AspectC++ is a general-purpose aspect-oriented extension
to the C++ language. We will use a simple example (�g-

ure 1) we have taken from the AspectJ introduction to il-
lustrate the features of AspectC++.

FigureElement

virtual void setXY(int,int) = 0;

Line Point

void setP1(Point&);
void setP2(Point&);

void setX(int);
void setY(int);

Point p1;
Point p2;

int x;
int y;

Figure 1: Class diagram of our example scenario

2.1 Language Introduction
In AspectC++ join points are de�ned as points in the com-
ponent code where aspects can interfere. Join points can
refer to code, types (classes, structs, and unions), objects
and control ows.

Pointcut expressions can be used to identify a collection of
such join points. They are composed from pointcut designa-

tors and a set of algebraic operators. In �gure 2 the pointcut
designators of AspectC++ are listed.

Additional to the pointcut designators named pointcuts can

be declared to ease the composition of complex pointcut
expressions:

pointcut moves() =

calls("void FigureElement::setXY(int,int)") ||

calls("void Point::set%(int)") ||

calls("void Line::setP%(Point &)");

In this example match expressions are used �lter-out spe-
ci�c join points. Match expressions are similar to C++ sig-

natures, but can contain additionally the wildcard charac-
ter \%". For example, \void %::set%(%)" could be used to
match the same set of join points (in this example scenario).

Advice
An advice declaration can be used to specify code that
should run at the join points speci�ed by a pointcut ex-
pression:

advice moves() : void after() {

cout << "A figure element was moved." << endl;

}

Context information from the join point can be exposed by
using pointcuts with arguments and match expressions that
contain identi�ers instead of type names everywhere where
context should be exposed:

advice calls("void FigureElement::setXY(x,y)") :

void after(int x, int y) {

cout << "A figure element was moved to ("

<< x << ", " << y << ")." << endl;

}

Di�erent kinds of advice can be declared, including an after

advice that runs after the join point, a before advice that is
executed before the join point, and an around advice, which
is executed in place of the join point. An around advice has

to request the execution of the original join point code using
proceed():

advice moves() : void around() {

cout << "A figure element will move." << endl;

proceed();

cout << "A figure element was moved." << endl;

}

If the advice is not recognized as being of a prede�ned kind,

it is regarded as a new method to be added to all join points
contained in the pointcut expression. The pointcut expres-
sion must contain in this case only join points of the type
class.

pointcut all_classes() = classes("%");

advice all_classes() : void print() {

cout << "Address: " << (void*)this << endl;

}

Aspect
While named pointcut declarations can appear everywhere
where declarations are allowed, an advice can only be de-
�ned inside an aspect declaration. Aspects in AspectC++
implement in a modular way crosscutting concerns and are
an extension to the class concept in C++. Additionally

to attributes and methods, aspects may also contain advice
declarations. Aspects can be derived from classes and as-
pects, but it is not possible to derive a class from an aspect.
By default, for every aspect a single object is instantiated
at run-time. Using the of-clause it is also possible to bind
the instantiation of aspects to certain pointcuts. Pointcuts

used with an of-clause must contain join points of a uniform
type (for example classes, objects, or cows):

aspect classCounter of all_classes() {

int count;

public:

classCounter() {

count = 0;

}

advice all_classes() : void bump();

};

void classCounter::bump() {

count++;

cout << "Called " << count << " times." << endl;

}

This example adds a method bump() to all classes. The

of-clause causes the aspect classCounter and thus the pri-
vate �eld count to be instantiated separately for every class.
Thus, each invocation of bump() will only count the number
of invocations of the bump() method of this class. Omit-
ting the of-clause would cause the default case to be used
where only a single instance of the aspect class is created.

With this modi�cation only a single count variable would be
maintained and used by all instances of bump().

2.2 Rationale of AspectC++
So far we have presented the basic concepts of AspectC++,
which are mostly adopted from AspectJ. The reason for this
similarity is to allow people who learned \thinking aspect-
oriented" by using the popular AspectJ implementation to
easily switch over to AspectC++, if they are also already
familiar with C++. Nevertheless AspectC++ is quite dif-

ferent in some points. The following paragraphs will discuss
the reasons for the di�erent design decisions.

Grammar
The parser of AspectJ is integrated into the Java parser
and the grammar of AspectJ shares rules with the standard
Java part. This allows aspect code and component code to
be mixed. For instance, it is allowed to de�ne named point-
cuts anywhere in the program, even as attributes of normal
classes. Thus AspectJ is really more a Java language ex-

tension than a separate aspect language. This makes it not
feasible to use AspectJ without modi�cations together with
other component languages than Java. While we would have
preferred to have a separate and portable aspect language
with its own grammar, where component code fragments are
only used as quoted strings, we are aware that the \look and

feel" would then di�er signi�cantly from AspectJ. To avoid

calls(\match expression")
receptions(\match expression")
executions(\match expression")

calls �nds all calls to methods with a signature matching the given match

expression, receptions refers to the code called through an abstract interface

with the given signature, and executions matches the body of a function. Con-
structors and destructors are treated like regular methods.

gets(\match expression")

gets(\match expression") [old]
sets(\match expression")
sets(\match expression") [old]
sets(\match expression") [old] [new]

gets and sets locate any direct access to �elds with a signature matching the
match expression. Field access through C++ references or pointers are not

recognized. old and new can be used in the aspect code to refer to the old and
the new value of the �eld.

classes(\match expression")
derived(pointcut)
bases(pointcut)
objects(\match expression")

instanceof(pointcut)

classes �lters out all classes, structures, and unions with matching names.
With derived it is possible to refer to all types in the pointcut expression and
all classes derived from them. bases can be used to �nd all base types of classes
in a pointcut. objects �nds objects with matching names, while instanceof can

be used to locate objects of a certain type.

handles(pointcut)
within(pointcut)

With handles for every class in the pointcut exception handlers are returned
that handle exceptions of that type. within matches all join points declared in
methods of types in the pointcut.

cow(pointcut)
each(cow(pointcut))

cow captures join points occurring in the dynamic execution context of join
points in the pointcut. each(cow(. . .)) can be used only in conjunction with
the of-clause to refer to execution contexts and not the join points occurring
in them.

callsto(pointcut) callsto can be used to locate all calls to join points in the given pointcut.

Figure 2: Pointcut designators in AspectC++

this problem the grammar of AspectC++ has been inte-

grated into the C++ grammar. Figure 3 shows the gram-
mar extensions. It should be understood as an extension to
the C++ grammar listed by Stroustrup [9].

A main design goal was to keep the grammar extension
simple. Compiler writers, who want to implement the As-

pectC++ language, should not be forced to use a hand-
coded parser. Instead they should be able to continue using
compiler generators and the lexical analysis should not re-
quire context information to work. Parsing C++ is already
much harder than parsing Java due to ambiguities in the
grammar, which require either the syntactical and semanti-

cal analysis phases to be mixed or an extremely weak gram-
mar. The AspectC++ extension should not shake such a
fragile building more than necessary.

Property-Based Pointcut Designators
One of the main problems with the AspectJ grammar comes
from the property-based pointcut designators. For example
in AspectJ the pointcut

calls(void FigureElement.set*(int, int))

refers to all calls to methods of class FigureElement with
two integer argument, void result type, and a name begin-

ning with \set". The symbol *" is used as a wildcard in
identi�ers. While this syntax might be familiar for Java
programmers it can not be used unmodi�ed in the C++
context. For instance, *" is a valid part in C++ type
declarators, which are used to declare pointers. Allowing
*" to be a wildcard character in pointcut designator there-

fore leads to ambiguities. For this reason we replaced *"

with \%" in AspectC++. Furthermore the \." between the

class name FigureElement and the match expression \set*"
is misleading for C++ programmers, because in C++ \::"
is used to specify quali�ed names. To avoid this problem
we have replaced \." with \::" in pointcut designators. For
reasons we will discuss below, it is further required to specify
pointcut designators as quoted strings. The following exam-

ple shows the AspectC++ version of the AspectJ pointcut
shown above as it results from the described modi�cations:

calls("void FigureElement::set%(int, int)")

The quoting of pointcut designators frees the lexical analyzer
from the burden to accept wildcards in identi�ers in speci�c
contexts and simpli�es the grammar signi�cantly: pointcuts
can now be parsed with the normal C++ expression syntax.

It is necessary to detect identi�ers, which are used to ex-
pose context information, in the quoted pointcut designator
strings. Furthermore simple regular expression matching
is not suÆcient to safely identify groups of function signa-
tures. Therefore the pointcut designators must be syntacti-
cally analysed. With our solution this parsing step can be

postponed and is the job of a separated parser. Thus no
additional rules in the C++ grammar are needed.

Generalized Type Names
\Generalized Type Names" (GTNs) are used in AspectJ to
select a group of types (i.e. classes and interfaces) with a
single pattern. For example

subtypes(Object) && !java.io.*

refers to all classes that are not part of the java.io package.

As it is shown here, GTNs may contain algebraic operators

aspect-name:
identi�er

declaration:
pointcut-declaration

class-head:
aspect identi�eropt aspect-clausesopt base-clauseopt

aspect-clauses:

aspect-clauses aspect-clauseopt

aspect-clause:
of pointcut
dominates aspect-name

pointcut:
constant-expression

member-declaration:

pointcut-declaration
advice-declaration

pointcut-declaration:
pointcut declaration

advice-declaration:
advice pointcut : declaration

Figure 3: The AspectC++ extensions to the C++

grammar

like \||", \&&", and \!" and the wildcard character *"
for pattern matching. Together with further functions like
\subtypes()" this can be used to form complex expressions
that select arbitrary sets of classes. GTNs can be used in
AspectJ to introduce new attributes, methods, base classes

or implemented interfaces into the referred set of classes.
For example

aspect A {

private Registry otherPackage.*.r;

}

introduces a new private attribute \r" of type Registry into

each class that matches the GTN \otherPackage.*".

While AspectJ explicitly distinguishes between pointcuts

and advice on the one hand and GTNs and introductions

on the other, AspectC++ handles both in a uniform way.
For example in AspectC++

aspect A {

private:

advice classes("otherNamespace::%") : Registry r;

};

can be used to introduce a member \Registry r" into each
class in namespace \otherNamespace". This design deci-

sions has the following advantages:

� With the concept of named pointcuts in combination
with the uniform handling, it is possible to have named
GTNs. While this is already a useful feature it is even
possible to have virtual or pure virtual GTNs in As-
pectC++.

� The grammar does not require special rules for GTNs

and introductions.

� The users bene�t from the coherent language design.

Everything that is declared inside of an aspect body
and begins with the keyword pointcut or advice will
have an impact on other classes while everything else
will become part of the instantiated \aspect object".

Regarding the implementation, this extended join point
model requires using typed join points. For example, the As-
pectC++ compiler has to ensure that only code join points
are used in conjunction with an before, after, or around ad-
vice.

3. PROTOTYPE IMPLEMENTATION
Our prototype implementation of a compiler for the As-
pectC++ language is a C++ preprocessor-like compiler

based on PUMA [8]. PUMA is a source code transformation
system for C++.

The architecture of our AspectC++ compiler is shown in �g-
ure 4. First the AspectC++ source code is scanned, parsed
and a semantical analysis is performed. Then the planing

stage is entered. In the planing stage the pointcut expres-
sions are evaluated and the join point sets are calculated. A
plan for the weaver is created containing join points and the
operations to be performed at the join points (i.e. adding
advice code). While the planing stage is mainly indepen-

dent from the component language C++, the weaver is now
responsible to transform the plan into concrete manipula-
tion commands based on the C++ syntax tree generated by
the PUMA parser. The actual code manipulation is then
performed by the PUMA manipulation engine. The output
of the prototype compiler is C++ component source code

with the aspect code woven in. The produced output source
code does not contain AspectC++ language constructs any-
more and thus can be translated to executable code using
conventional C++ compilers.

As the proposed AspectC++ language was designed with

the diÆculties of the C++ grammar in mind, adding the
language extensions to the C++ grammar is quite straight
forward. We would have preferred an implementation where
the additional grammar rules of AspectC++ can be dynam-
ically added to the C++ grammar, but PUMA did not give
us this choice. The PUMA scanner has also been modi�ed

to recognize the new AspectC++ keywords. We discovered
that it is possible to restrain the number of new keywords to
aspect, pointcut and advice by slightly changing the grammar
rule for an aspect clause (�gure 5).

The modi�ed grammar will accept a superset of valid As-
pectC++ aspect clauses, but it is possible to �lter out in-
valid aspect clauses during the semantic analysis. The rea-
son for this quirk is to prevent incompatibilities with plain
C++ where \`of" and \dominates" are valid identi�ers.
Such collisions can still occur with the three new keywords,

but eliminating those would require a major restructuring
of the AspectC++ grammar.

The AspectC++ speci�c parts of the compiler are imple-
mented as a plugin for the PUMA system. As described
above, we have split this plugin into two major parts: the

planner and the weaver.

PUMA

AspectC++

plan
syntax tree
C++

token stream aspects semantics

manipulated source code

AspectC++ source code

manipulator commands

manipulator

scanner parser sem. analyser

C++ compiler

weaver

planner

Figure 4: Architecture of the AspectC++ compiler

aspect-clause:
identi�er pointcut
identi�er aspect-name

Figure 5: Modi�ed aspect clause grammar

The planner is using internally sets of join points to rep-
resent pointcuts. Thus, the algebraic operators are imple-
mented as operations on join point sets. As in AspectC++
join points can represent locations in the control ow as
well as other kinds of join points (i.e. classes), special at-

tention has to be paid to the propagation of the join point
type when join point sets are merged. The planner performs
an extensive dynamic type checking on the join point sets
to ensure the syntactical and semantical correctness of the
manipulated source code. The C++ language dependent
weaver is responsible to materialize the plan generated by

the planner. By doing so the weaver heavily depends on code
transformation operations o�ered by the PUMA library.

For the end-user the AspectC++ prototype compiler be-
haves like a compiler front-end (ac++). In contrast to tra-

ditional compilers our front-end transforms a whole program
at once. While aspects can be implemented in the same �les
as the component code, from our experience we suggest to
putting aspect declarations in dedicated aspect �les.

4. RELATED WORK
Using aspect-oriented implementation techniques in con-
junction with C++ does not seem to be very popular in
the AOP community. Only very few contributions related
to C++ can be found in the proceedings of relevant confer-
ences and workshops of the last years. We explain this with
the overall \Java hype" and, more than that, with the lack

of tool support. For instance, L. Dominick describes \life-

cycle control aspects when applying the Command Proces-

sor pattern" and complains \because no weaver technology
was available, C preprocessor macros were used" [3].

A very interesting approach is followed by FOG [11]. FOG
is a meta-compiler for C++ supporting a superset of the
language. Similar to the AspectC++ implementation it is a

source to source translator, but the language concept di�ers.
In FOG the C++ \One De�nition Rule" is replaced by a
\Composite De�nition Rule". This allows, for instance, to
de�ne multiple classes with the same name, which FOG will
then merge into a single class. Functions and attributes
can be easily added this way to classes. Function code can

be extended with a similar mechanism. While FOG seems
to be ideally suited for subject-oriented programming [4][7]
the join point model is much less powerful in comparison
to AspectJ/C++. Especially the algebraic operations on
\pointcuts" and the notion of control ow are useful in many
aspect implementations.

More powerful than the FOG approach is OpenC++ [1]. It
allows a compiled C++ meta-program to manipulate the
base-level C++ code. Classes, types, and the syntax tree
of the base-level are visible on the meta-level and arbitrary
transformations are supported. This implementation has a

lot in common with the PUMA code transformation sys-
tem. OpenC++ allows aspect-oriented programming, but
language extensions that especially support AOP are not
provided.

AspectC [2] is an aspect-oriented extension to plain C, which
is currently under development to study crosscutting con-
cerns in operating system code. It is not planned to support
C++ component code with this implementation [5]. As-
pectC also adopts the key concepts from AspectJ, but the
non-object-oriented nature of C forces AspectC to leave out

many useful features like using inheritance to compose as-
pects. As C is basically a subset of C++ our AspectC++
tools can be used with C as well.

5. CONCLUSIONS AND FUTURE WORK
Much of the work presented in this paper is based on As-
pectJ. This holds especially for the language introduction in
section 2.1. However, we have attempted to streamline the
language extensions for the use in conjunction with C++.

A major change compared to the AspectJ language is the
modi�ed join point model, which allows to have class, object
and control ow join points. The result is a more coherent
language design and we would suggest to consider chang-

ing the AspectJ join point model accordingly. While it was
necessary to make some visible changes to the syntax and
grammar of AspectJ, we have preserved most language con-
cepts. This should enable users experienced with AspectJ
and C++ to get familiar with AspectC++ without much
e�ort.

The prototype implementation of an AspectC++ compiler is
still in an early stage. The compiler cannot yet deal correctly
with all AspectC++ language constructs in all possible con-
texts. However, the clear architecture of the compiler and
the powerful tool support in form of PUMA ease the further

development of the AspectC++ compiler. As the prototype

implementation of the compiler we see also the AspectC++

language as still under development and we are open for sug-
gestions how to further optimize the syntax and semantics.

Concerning future extensions we see room for improvement
in the area of the match expressions. We have implemented
a PUMA mechanism for creating syntax tree fragments from

a textual representation [10]. Currently we are analyzing the
possibility to use this syntax-oriented textual representation
to create more powerful match expressions.

We also intend to add mechanisms to AspectC++ to ma-
nipulate the C++ class hierarchy (for example adding a new

base class to certain classes). AspectJ has also limited sup-
port for this feature, but we are still investigating a more
general approach. We believe that our modi�ed join point
approach was already the right step in this direction.

6. REFERENCES
[1] S. Chiba. Metaobject Protocol for C++. In

Proceedings of the ACM Conference on

Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA), pages 285{299, Oct.
1995.

[2] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, J. S.
Ong, and S. Gudmundson. Exploring and

Aspect-Oriented Approach to OS Code. In Proceeding

of the 4th ECOOP Workshop on Object-Orientation

and Operating Systems (ECOOP-OOSSWS'2001),
pages 55 { 59. Universidad de Oviedo, June 2001.
ISBN 84-699-5329-X.

[3] L. Dominick. Aspect of Life-Cycle Control in a C++
Framework. In Proceedings of the Aspect-Oriented

Programming Workshop at ECOOP'99, Lisbon,
Portugal, June 1999.

[4] W. Harison and H. Ossher. Subject-Oriented
Programming (a Critique on Pure Objects). In
Proceedings of the ACM Conference on

Object-Oriented Programming: Systems, Languages,

and Applications (OOPSLA), pages 411{428,

Woshington, D.C., Sept. 1993. ACM.

[5] G. Kiczales, July 2001. Personal communications.

[6] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten,

J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 {

Object-Oriented Programming, volume 2072 of LNCS.
Springer-Verlag, June 2001.

[7] H. Ossher and P. Tarr. Operation-Level Composition:
A Case in (Join) Point. In Proceedings of the

Aspect-Oriented Programming Workshop at

ECOOP'98, Brussels, Belgium, July 1998.

[8] O. Spinczyk and M. Urban. The PUMA Project
Homepage, 2001.
http://ivs.cs.uni-magdeburg.de/~puma/.

[9] B. Stroustrup. The C++ Programming Language.

Addison-Wesley, 1997.

[10] M. Urban. The PUMA User's Manual, 2000.

http://ivs.cs.uni-magdeburg.de/~puma/.

[11] E. D. Willink and V. B. Muchnick. Weaving a Way

Past the C++ One De�nition Rule. In Proceedings of

the Aspect-Oriented Programming Workshop at

ECOOP'99, Lisbon, Portugal, June 1999.

