
Limiting Result Cardinalities for Multidatabase Queries
using Histograms?

Kai-Uwe Sattler1, Oliver Dunemann1, Ingolf Geist1, Gunter Saake1, and Stefan
Conrad2

1 Department of Computer Science, University of Magdeburg
P.O. Box 4120, D-39016 Magdeburg, Germany
fusion@cs.uni-magdeburg.de

2 Department of Computer Science, University of Munich
Oettingenstr. 67, D-80538 M¨unchen, Germany
conrad@dbs.informatik.uni-muenchen.de

Abstract. Integrating, cleaning and analyzing data from heterogeneous sources
is often complicated by the large amounts of data and its physical distribution
which can result in poor query response time. One approach to speed up the pro-
cessing is to reduce the cardinality of results – either by querying only the first
tuples or by obtaining a sample for further processing. In this paper we address
the processing of such queries in a multidatabase environment. We discuss imple-
mentations of the query operators, strategies for their placement in a query plan
and particularly the usage of histograms for estimating attribute value distribu-
tions and result cardinalities in order to parameterize the operators.

Keywords: Result Cardinality, Histograms, Multidatabase, Optimization

1 Introduction

In a large number of application areas integration of data from heterogeneous sources is
required, e.g., for building federated information systems or data warehouses. Besides
integration of data there is often also a need for cleaning and analyzing the data in order
to obtain qualitatively appropriate results.

By means of multidatabase languages (e.g MSQL [GLRS93], SchemaSQL [LSS96],
FRAQL [SCS00]) we have the tools at hand which are needed for querying across di-
verse data sources. Querying using multiple data sources usually produces complete
result sets. This requires processing large amounts of data and, thus, results in very
poor query response time taking the physical distribution of the data into account.

In data analysis applications such as OLAP, data mining or information fusion we
often want to get the ‘first’ results quickly, e.g., in order to find interesting regions in
data or to parameterize the methods and tools. Another example is the case of identi-
fying conflicting values for semantically related attributes stored in different databases.
One does not want to obtain all conflicting pairs of values because there might be too
many of them for manual inspection. Instead, a certain number of conflicting pairs

? Research was supported by the grant FOR 345/1 from the DFG.

given as examples can help to understand the basic problem (e.g. different scaling of
values in the different data sources). Then, adding a corresponding conflict reconcili-
ation function to the multidatabase query used for detecting this conflict should show
whether there are no further conflicts (i.e., the reconciliation function is working for all
data) or whether we have to modify the reconciliation function in order to capture more
conflicts.

Thus, if multidatabase features are combined with techniques for reducing query
response time by limiting result cardinalities, more explorative and interactive data in-
tegration and analysis will be possible. Unfortunately, all multidatabase languages so
far proposed do not allow requests for a specified number of resulting tuples as exam-
ples instead of the complete result set. Therefore, we are seeking suitable extensions of
multidatabase languages leading to efficient retrieval of example data. In this paper we
will explore two ways of getting such example data:

1. asking for thefirst n results of an integrating multidatabase query and
2. asking for asamplecontainingn tuples of the complete result (or for a certain

percentage of resulting tuples).

These two possibilities have already been considered in other contexts. For instance
asking for the firstn (or the bestn) results is typical for information retrieval. Much of
the work regarding this subject proposes optimization for evaluating such queries (cf.
e.g. [CK97,TGO99]). In contrast to these approaches we have to deal with the problem
that in a multidatabase environment there are usually legacy systems acting as local data
sources.

These local systems may have their own query processing and optimization engine
(in particular, if they are database management systems). If such a system offers the
possibility to retrieve the firstn tuples or a sample of a result, we obviously should try
to use this possibility instead of transferring the complete result set for a query to the
multidatabase system and computing the firstn tuples or the sample there.

Another aspect that we give detailed consideration to in this paper is the case that
statistical data (histograms) about the data stored in a local source is available and can
be accessed by the multidatabase system. In this case we develop a global query opti-
mization taking this meta-data into account – focusing on the processing of ‘firstn’ and
‘sample’ queries.

Our work is based on the object-relational multidatabase language FRAQL [SCS00]
which in particular allows the dynamic addition of user-defined conflict reconciliation
functions. For this language a query engine has been implemented which is able to
access heterogeneous database systems by means of specific database adapters. In our
current prototype environment we are using native adapters for Oracle and MySQL
and access other data sources via ODBC. So, the main contribution of this paper is the
application of histogram-based techniques for optimization and processing of ‘firstn’
and ‘sample’ queries under the special circumstances of a multidatabase system.

The remainder of this paper is organized as follows. In the next section we briefly
present related work. Section 3 gives an overview of basic techniques for limiting result
cardinalities and sampling described in the related literature and discusses their suitabil-
ity in multidatabases. In Section 4 we describe the usage of histograms for estimating

query parameters such as intermediate result sizes and attribute value distributions in the
FRAQL system, which are essential for optimizing and processing first-n and sample-n
queries. Some evaluation results for our approach are presented in Section 5. Finally,
we conclude by summarizing the main insights and by pointing out future work.

2 Related Work

Statistical methods have been used in central database systems for twenty years, pre-
dominantly in the area of the query optimization and query result size estimation. Re-
cently, strongly associated to data warehouse techniques, several works on this matter
investigate how to limit the query results and how to provide approximate answers to
user queries. An overview of these data reduction methods is given in [BDF+97].

[CK97,CK98] discuss an approach to restrict the result set by allowing the user to
specify the desired result set size. This is accomplished by the SQL extensionSTOP
AFTER. The intermediate results are limited by placing a stop node in the query tree.
The authors propose two optimization strategies, namely a conservative and an aggres-
sive. In addition they recommend a restart node in cases in which the original stop
node did not produce the desired result size. Several commercial database management
systems provide a similar technique to compute the top-n results.

Sampling is another technique for data reduction. The authors of [OR86] and [Olk93]
describe different kinds of uniform random sampling techniques in a DBMS, because
the integration of sampling in a database system can increase the performance of the
sample computation. They discuss several techniques for uniform random sampling
from base relations or the output of relational operators.

In [CMN99] and [AGPR99] the join sampling problem is pointed out as an example
of the problem of commuting the sample operator with relational operators. [AGPR99]
uses precomputed join samples, so-called join synopses, to provide approximate an-
swers for join aggregation queries. These synopses are well suited for star or snowflake
schemas which are usual in the data warehouse area. This approach is implemented
in the AQUA system [AGP99], which works on top of any commercial DBMS and
stores its precomputed statistical data in relations within the DBMS. For providing fast
approximate answers for user queries, the system rewrites the query using the AQUA
relations instead of the base relations and scales the aggregated query in the desired
manner.

Using precomputed histograms for determining approximate answers is yet another
possibility to reduce the query result size and to achieve short query response times.
This technique is among others described in [PGI99]. The authors claim that it is pos-
sible to execute non-aggregate and aggregate queries using this method. Thereby the
queries are rewritten using the histograms instead of the base relations.

An interactive and iterative way to provide approximate answers for aggregated
queries, called online-aggregation, is described in [HHW97]. Here the user starts with
a relative imprecise answer provided by a first small random sample of the data. This
initial value will be improved during the processing. The user can observe online the
value changes and the error bounds in order to decide when the exactness of the answer
is sufficient for his needs.

3 Result Cardinality Limitation in Query Processing

As discussed in the previous section there are several approaches to limit the result size
of a query in order to improve the response time of query evaluation. In the following we
will focus on two approaches which are implemented as part of the multidatabase sys-
tem FRAQL query processor [SCS00]:LIMIT FIRST andLIMIT SAMPLE. Both
are extensions to the standard SQLSELECTstatement:

SELECT <projection list>
FROM <table expression>
[WHERE <condition>]
[ORDER BY <order spec>]
LIMIT FIRST|SAMPLE <value expr> [PERCENT]

The parameter<value expr> can be any expression which represents a positive
integer value including zero. Thus it can be a constant, a functional expression or a
sub-query that is not correlated with the main query. If the keywordPERCENTis given,
<value expr> denotes the percentage of the desired result size.

3.1 First n Tuples

With LIMIT FIRST at most<value expr> tuples are retrieved from the result set,
if they exist. Please note that grouping and ordering have higher priority than cardinality
reduction, so these operations are performed before any kind of limitation. Conversely,
projection as well as aggregations have lower priority, i.e., the query

SELECT avg(balance)
FROM Accounts
ORDER BY balance
LIMIT FIRST 10 PERCENT

computes the average of the top 10% of the account balances.
Obviously, the cardinality limitation could be performed on top of the database en-

gine in the application by closing the database cursor when the limit is reached. How-
ever, the performance benefits would be rather low. Thus, a special query operator is
required which can be placed in the query execution plan and ‘cuts’ the tuple stream
after the desired cardinality. Following the operator introduced in [CK97], we added an
operatorstop to our query engine, which implements the iterator model [Gra93] and
passes a given number of tuples from the input stream. At physical level the stop oper-
ator has several implementations: a simple pipelined scan-stop operation for unordered
limitations and a blocking sort-stop operation, that collects the top or bottomn tuples
from the input stream in a sorted heap and produces the result set after processing the
whole input.

In order to minimize the costs for query execution the stop operator should placed
low in the operator graph. In [CK97] two placement strategies are discussed. With the
conservative policy, the stop operator is inserted at a point in the query plan where
no tuple is discarded that might be part of the final result. LetOpi be an operator of

a planP = Op1Op2 : : : Opi�1Opi : : : Opr with Opr as root operator andcard(Op)
the cardinality of the result produced byOp, thenOpi is cardinality-preservingif the
following condition holds:

card(Opi) � card(Opi�1)

The aggressive approach tries to place the stop operator earlier in the plan, i.e.,
even where it could provide a cardinality reduction. This requires estimating the stop
cardinality by using database statistics as well as a restart operator which ensures that
the desired number of tuples is produced even if the estimated stop cardinality was too
low. In this case, the sub-query below the restart operator has to recompute the missing
tuples.

The scenario which we support with our FRAQL system contains some special char-
acteristics. At first, we operate in a multidatabase environment, i.e., parts of the query
are performed by the local component databases which are often full-fledged DBMS.
Thus, we want to exploit the ability of the sources to limit the result cardinality in or-
der to reduce the communication costs and the query evaluation effort at global level.
Restarting a query could be very expensive, so a safe estimation of the cardinality limit
is needed. The second specialty of our scenario is a relaxed requirement regarding the
exactness of the cardinality limitation. For supporting explorative data analysis tasks it
is more important to get results meeting a given criterion very quickly. In addition, if a
percental limit was specified, a small discrepancy is often tolerable. Thus, we embark
on a strategy for placing the stop operator in the query plan, which is enforced by the
following rules:

1. The main goal is to insert stop operators as deep as possible in the query execu-
tion tree according to the query’s semantics and the capabilities of the component
databases.

2. A safe placementis possible if the subsequent operators are cardinality-preserving
and contain no sorting (cf. the conservative policy mentioned above). In this case
the limit parameter need not be modified.

3. If the query contains a sort operator which cannot be performed by the component
databases, this operator is replaced by a sort-stop operator.

4. If the remaining operators are not cardinality-preserving anunsafe placementcan
be performed, i.e. the limit parameter has to be recomputed.

5. For unsafe placement an additional stop operator has to be inserted near the root of
the global plan respecting the higher priority of grouping operators.

6. For a join operation the stop operator is inserted only in one of the branches, either
according to the safe placement policy, i.e., in the branch, for which the join pred-
icate is cardinality-preserving, or – if no advantage can be taken from referential
integrity constraints – in an unsafe manner by choosing the branch where it effects
the largest decrease of costs.

A plan for a query containing aLIMIT FIRST clause is constructed as follows: after
substituting global view definitions, performing the usual transformations (e.g., stan-
dardization, simplification [JK84]) and decomposing the query into sub-queries pro-
cessable by the sources, the optimizer seeks to insert a stop operator according to the

rules given above at the root of the sub-query. If the global remaining operations are
not cardinality-preserving, the limit parameter has to be adjusted by estimating the car-
dinality of the sub-query, which is computed from the selectivity of the operations and
the histograms of the base relations as well as the intermediate results. Letcard(Pall)
be the estimated result size without limitations andn the limit specified in theLIMIT
FIRST query. So, the proper cardinality limit for the stop operator above operatorOpi
is as follows:

Lstop =
card(Opi) � n

card(Pall)
(1)

An additional stop operator is placed at the root of the global plan just to ensure that
not too many tuples are produced. In case of aLIMIT FIRST : : : PERCENTclause
the unlimited result size is estimated from the histograms and the percentage needed for
parameterizing the stop operator is computed.

3.2 Random Sampling

By using the notationLIMIT SAMPLE <value expr> [PERCENT] the system
generates a simple uniform sample of sizen of the query result. An efficient com-
putation requires a sample operator, as described in [Olk93], being applied as low as
possible in the query plan.

As we are in a multi database environment, there are several constraints, which have
to be considered. Our system uses virtual integrated relations, so there are no indexes
or complete statistics available. Furthermore an efficient random access is not possible.
But on the other hand, the different sources can have different features, which have to
be exploited. The histogram capabilities of the FRAQL system have to be taken into
account for optimizing sampling queries.

Because of missing random access to the data, sequential sampling algorithms have
to be utilized. There are two types of scenarios: known and unknown relation sizes. In
the first case, algorithms as described in [Vit87] can be used, which have the advan-
tage of not blocking. In the second case sampling with reservoir [Li94] is necessary.
These algorithms do not need the relation size, but provide the first tuples only after the
complete scan of the relation.

After the description of our environment and constraints, we now want to show
which approaches can be adapted to our scenario. The crucial point is sampling of join
and union operations.

Several approaches of random join sampling exists in literature. The objective of
such strategies is to push down the sampling operator on one side of the operator tree
since it is not possible to use sampling on both relations [CMN99]. Possible strategies
are:

– Naive samplingincludes a first complete computation of the join ofR andT fol-
lowed by the application of the sample operator.

– The second strategy is proposed in [Olk93] and includes the following steps. Con-
sider the computation of a join ofR andT . First sample uniform randomly one

tuple fromR and join it withT and getting the resultV . Select randomly one tu-
ple fromV and accept it with the probability proportional to the cardinality ofV .
These steps are repeated until the required sample sizen is obtained.

– In [CMN99] further join sample strategies were proposed, which only require statis-
tics or partial statistics on one relation.Group-sampleis one strategy of these and
consists of following steps for the join of the relationsR andT :
1. First produce a weighted WR-sample of relationR of the sizen. The weight

!(t) for a tuplet is the number of distinct tuple with valuev in join attribute
t:A. This sample is denoted byS1.

2. JoinS1 with T and group the join after the tuples ofS1. The result isS2.
3. The last step consists of picking out one tuple from each group ofS2 using a

unweighted random sample algorithm.

With the above constraints, the sampling approach according to [Olk93] cannot be ap-
plied in our environment because it requires an index as well as full statistics. However,
the naive sampling algorithm or group-sample is possible. To support the latter strategy
the FRAQL system supports a histogram scheme, the application of which is described
in section 4.

There are different approaches to obtain samples of the union operation. These tech-
niques require indexes and statistics and from there a materialization. So they cannot be
used in our scenario.

4 Using Histograms

In relational database systems, information about cardinalities of the relations and the
distributions of attribute values is essential for calculating the costs of query execution
plans. Thus, modern systems maintain statistical information mostly in the form of
histograms which are particularly well suited to the representation of approximations of
non-parametric distributions. Using this information the query optimizer is capable of
estimating selectivities of operators and cardinalities of result sets. A histogram consists
of a set of buckets representing a subset of values of an attribute. Each bucket contains
the number of tuples having the value associated with the bucket. In the following we
denote the number of buckets asB and the number of tuples in thei-th bucket as
bucket(i) for i = 1 : : : B.

There are various classes of histograms used in database systems nowadays. Inequi-
width histogramsthe size of the range of values in each bucket is the same, whereas in
equi-height histogramsthe frequencies of the attribute values contained in each bucket
are equal. Typically, equi-height histograms are used in database systems because of the
lower worst case error [PSC84]. In [IP95] serial and end-biased histograms are proposed
as optimal solution in many cases, but they are currently not very common. However,
using histograms in a heterogeneous database environment entails several difficulties:

– the representation of histograms in system catalogs differs for the various available
database systems,

– the availability and efficient access to histograms are crucial factors for processing
global queries,

– there are data sources which do not maintain histograms or for which histograms
cannot be calculated due to limited query capabilities.

Thus, for our FRAQL system we have chosen an approach for histogram maintenance
where histograms of global visible relations, i.e., the integrated relations, are kept in
the global layer of the multidatabase. When a relation is ‘imported’ from a source,
i.e., a global virtual view is defined in FRAQL on this relation, the histograms for this
relations are retrieved. The adapters for the individual database systems participating
on the multidatabase are responsible for a uniform access to the system-specific his-
tograms. So, each adapter provides a method for obtaining a histogram which can be
implemented in one of the following ways:

– get the histogram directly from the database catalog of the source,
– trigger the computation of the histogram in the source (e.g., ‘compute statistics’ in

Oracle),
– compute the histogram in the adapter itself,
– construct a trivial histogram representing an equipartition if neither a histogram is

available nor can it be computed.

Obviously, caching histograms in the federation layer is a compromise between efficient
access as well as availability and the actuality of statistics on data. However, for our
intended application scenario – data analysis in heterogeneous databases – this approach
seems to be practical.

In the following subsection we describe the usage of histograms for supporting re-
sult cardinality limitation techniques introduced in Section 3. In particular we discuss
the calculation of estimations for intermediate result cardinalities and distributions as
implemented in the FRAQL query processor.

4.1 Using Histograms for Estimating Stop Cardinalities

In Section 3 we have identified cardinality estimation as an important task for param-
eterizing the stop operator, if only an unsafe placement is possible. For this purpose
histograms are very helpful. Based on histograms of the base relations, the distribution
and cardinality of the intermediate results after applying the particular operators of the
query plan can be estimated by the global query optimizer. Finally, the limit param-
eter for the stop operator can be derived according to equation (1). This approach is
implemented in FRAQL system by means of the following three steps:

1. Traversing the operator tree top-down, all attributes are determined for which his-
tograms are needed, i.e., attributes referenced in expressions of join or selection
conditions for example.

2. For each operator node the attribute value distribution in form of the histogram, the
cardinality of the result set as well as the selectivity of the operator are calculated.
This is performed bottom-up for all attributes identified in Step 1.

3. The limit parameter for the stop operator is calculated using equation (1).

Fig. 1 illustrates these steps for the operator tree of the query:

SELECT *
FROM customers c, insurances i, accounts a
WHERE c.cust_id = i.cust_id AND

c.cust_id = a.account_no AND
a.balance > 6000

LIMIT FIRST 10 PERCENT;

stop

./

stop �balance>6000

./
accounts a

customers c insurances i

hist1(cust id) hist2(cust id)

hist3(account no)
hist4(balance)

hist5(cust id)

sel(balance > 6000)

hist6(account no)

hist7(cust id)

Lstop

N

card(PAll)

Figure 1. Histogram estimation for aLIMIT FIRST -query

Assuming that coincided histograms are available for the attributesc.cust id and
i.cust id (denoted ashist1(cust id) and hist2(cust id)) of the base relations the
buckets of the histogramhist5(cust id) for the join c ./ i can be calculated using the
following formula[SS94]:

8j = 1 : : : B : bucketc./i(j) =
bucketc(j) � bucketi(j)

max(dc; di)

Here,dc anddi are the numbers of distinct values present in the join column fromc or
i respectively. If the histograms do not coincide a preceding normalization step has to
be performed.

For the selection operator on relationaccounts the histogram can only be de-
rived indirectly by calculating the selectivity of the operator. According to the formu-
las presented in [PSC84] we can estimate the selectivitysel for the expressionbal-
ance > 6000 . Let sel�c be the estimated selectivity of comparisonattr � c for

� = f<;>;�;�;=g. Since

sel>c = 1� sel�c and

sel�c = sel<c + sel=c

we have only to estimatesel<c andsel=c. In [PSC84] the following formulas are given
for the case where the valuec is in thek-th bucket:

sel<c =
k � 1 + 1=3

B + 1

sel=c =
1=3

B + 1

Based on these formulas the selectivity of the expression can be computed using the his-
togram ofa.balance . This value is used to adjust the histogram fora.account no
(denoted ashist6(accountno)) by reducing the height of each bucket assuming inde-
pendence of the attributes:

8j = 1 : : : B : bucket(j) bucket(j) � sel>6000

Next, the histogramhist7(cust id) for (c ./ i) ./ a is calculated as shown above,
whereas the stop operator is ignored for the moment. The cardinality of the final result
set at the root of the operator tree is equal to the sum of the heights of all buckets of this
histogram:

card =
BX

j=1

bucket(j)

Finally, the limit parameter for the stop operator is calculated. This requires firstly es-
timating the percentage of the cardinality of the whole relation. This value then can be
inserted as parametern in equation (1).

A special treatment is required for histograms of relations containing attributes
which are transformed by applying so-called mapping functions [SCS00] as part of
the view definition. Because the mapping is implemented as a special query operator in
the query plan the involved histogram also has to be mapped. A straightforward solution
is to apply the mapping function to each bucket boundary value.

4.2 Using Histograms for Sampling

In this section the use of histograms to support the sample operation is discussed. As
shown in section 3 there is a need to apply a weighted sampling algorithm to overcome
data skew and problems with join sampling. Calculating these weights requires knowl-
edge regarding frequencies of the distinct values which can be provided by histograms.

The following example query computes a random sample of size 1,000 of the join
between the relationscustomers andinsurances .

SELECT *
FROM customers c, insurances i
WHERE c.cust_id = i.cust_id
LIMIT SAMPLE 1000

In order to improve the performance the sample operator has to be moved towards
the leaves in the operator tree. One strategy, the group sample mentioned above, is
introduced in [CMN99]. Figure 2 shows how we support this strategy with histograms.

GS
./

wr-sample

customers insurances

hist2(cust id)

1000

group-sample
join

Figure 2. Histogram estimation for aLIMIT SAMPLE-query

We want to sample the join ofcustomers and insurances on the attribute
cust id . According to the group-sample strategy we therefore need frequency infor-
mation about the distinct values ofcust id in relationinsurances as provided by
a histogram. A weight!(t) of a tuplet of the relationc is calculated as follows:

!(t) = card(Pall) � sel=t:cust id(i):

sel=t:cust id(i) denotes the selectivity of the value in relationi and is computed by
the statistical data in the histogram for the columninsurances.cust id . So the
first step of the group-sample strategy is accomplished. The second step is performed
in the group-sample-join operator, whose output is a sample of the join of the relations
customers andinsurances .

5 Evaluation

The main focus of the following empirical evaluation is not on the possible perfor-
mance gains, because these depend strongly on the characteristics of the involved data
sources. Instead, we evaluate the quality of estimations and results, which rely on sta-
tistical information contained in histograms as previously described. For this purpose
the following schema is used:

db#1: customers (cust id , income)
insurances (insurance id , cust id)

db#2: accounts (account id , account no, balance)
Databasedb#1 consists of two relationscustomers and insurances . It stores
information about 250,000 customers, each one having one, two or no insurances with

the average of one. No special distribution describes the attributecust id , but there
is a foreign key constraint frominsurances to customers . The second database
db#2 to be integrated to a global view consists of a table of about 325,000accounts .
The attributeaccount no matches tocustomers.cust id and for about 57% of
all customers at least one account can be found. The balances are normally distributed
with a mean of 10,000 and a standard deviation of 5,000. For all involved attributes
equi-height histograms consisting of 10 buckets are calculated.

The example query executed on this constellation leads to the access plan shown
in table 1. Here,x in step 7 stands for the requested cardinality in percent. Because in
the average case there exists one insurance per customer, the cardinality of the index
scan in step 2 is approximately the same as the number of tuples incustomers . The

Step (i) Operator(Opi) Cardinality(card(Opi))

7 Select � L = card(Pall) �
x

100

6 Join results from Step 4 and 5 see section 4.1
5 Table access [accounts] card(accounts)

4 StopLsub � Lsub

3 Join [customers] and [insurances] � card(customers)
using index on [insurances]

2 Unique index range scan � card(customers)
[Primary key of insurances] � card(insurances)

1 Table access [customers] card(customers)
Table 1.Access plan: verification of cardinality estimation

limit Lsub for the subplan depends on the choice of the percentage of data sets to be
retrieved. It is calculated with support of the histogram. To verify, whether this calcu-
lation step leads to a correct limitation, the desired and the actual generated result sizes
for estimatedLsub, computed as illustrated in section 4.1, are compared in Fig. 3(a).
The number of tuples of the exact calculated percentage is compared with the number
of tuples retrieved using the estimation techniques in Fig. 3(b). It can be seen that the
histogram supported estimation leads to a result size which is near to the requested car-
dinality. The difference increases with higher limit values. For the considered query,
the number of retrieved tuples is underestimated in all cases, so that at least the desired
cardinality is provided.

The quality of the sample operation is verified by testing, whether the existing data
distributions are maintained or not. For this test a sample of 1,000 tuples of the joined
relationscustomers and insurances is generated. The access plan is shown in
table 2. The methodology of at first generating a weighted sample and applying the
modified join operation on the result is described in detail in [CMN99] as stream-
sample strategy. The attributeincome is in the base relation [customers] approx-
imately normally distributed with a mean of 5,000 and a standard deviation of 1,000.
Using a goodness-of-fit�2 statistic we test the hypothesis that this distribution is main-
tained by the join operation on a sample ofn1 = 100 andn2 = 1000 tuples. Let
the level of significance be� = 0:05 and the test intervalsA1 = (�1; 1000]; A2 =

estimated

retrieved

0 2000 4000 6000 8000 104

0

2000

4000

6000

8000

Stop limit

Result
cardinality
using stop
operator

(a) Comparison between estimated and retrieved size

10 20 30 40 50

0

0.5

1

1.5

Query limit in %

Relative
error
in %

(b) Relative estimation error

Figure 3. Evaluation results

Step (i) Operator(Opi)

5 Select
4 Join
3 Weighted sample with replacement of [customers]

Weights are frequencies from Step 2
2 Histogram access (frequency ofcust id [insurances]
1 Table access [customers]

Table 2.Access plan: verification of maintaining of distribution

(1000; 2000); � � � ;A10 = (9000;1]. Further, letfreqj be the observed frequency of a
value of the sample in interval j andpj the theoretical expected count. Then, the value
of the test function

v =
1

n
�

10X

j=1

freq2j
pj

� n (2)

calculates to 8.69 in the case of the sample sizen1 and to 6.31 in the case of 1000 data
sets to be retrieved. Because the value of thex1�� fractile of the distribution�2(k �
1) = �2(9) = 16:92 is larger than these values, we cannot reject the hypothesis that
the original distribution is maintained. Consequently, sampling constitutes an adequate
way to reduce the data for analysis purposes.

References

[AGP99] S. Acharya, P.B. Gibbons, and V. Poosala. Aqua: A Fast Decision Support Systems
Using Approximate Query Answers. In M.P. Atkinson, M.E. Orlowska, P. Valduriez,
S.B. Zdonik, and M.L. Brodie, editors,VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK, pages 754–757. Morgan Kaufmann, 1999.

[AGPR99] S. Acharya, P.B. Gibbons, V. Poosala, and S. Ramaswamy. Join Synopses for Ap-
proximate Query Answering. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, edi-
tors,SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Man-
agement of Data, June 1-3, 1999, Philadephia, Pennsylvania, USA, pages 275–286.
ACM Press, 1999.

[BDF+97] D. Barbará, W. DuMouchel, C. Faloutsos, P.J. Haas, J.M. Hellerstein, Y.E. Ioannidis,
H.V. Jagadish, T. Johnson, R.T. Ng, V. Poosala, K.A. Ross, and K.C. Sevcik. The New
Jersey Data Reduction Report.Data Engineering Bulletin, 20(4):3–45, 1997.

[CK97] M.J. Carey and D. Kossmann. On Saying ”Enough Already!” in SQL. In J. Peck-
ham, editor,SIGMOD 1997, Proceedings ACM SIGMOD International Conference
on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 219–230.
ACM Press, 1997.

[CK98] M.J. Carey and D. Kossmann. Reducing the Braking Distance of an SQL Query
Engine. In A. Gupta, O. Shmueli, and J. Widom, editors,VLDB’98, Proceedings of
24rd International Conference on Very Large Data Bases, August 24-27, 1998, New
York City, New York, USA, pages 158–169. Morgan Kaufmann, 1998.

[CMN99] S. Chaudhuri, R. Motwani, and V.R. Narasayya. On Random Sampling over Joins. In
A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors,SIGMOD 1999, Proceedings
ACM SIGMOD International Conference on Management of Data, June 1-3, 1999,
Philadephia, Pennsylvania,USA, pages 263–274. ACM Press, 1999.

[GLRS93] J. Grant, W. Litwin, N. Roussopoulos, and T. Sellis. Query Languages for Relational
Multidatabases.The VLDB Journal, 2(2):153–171, April 1993.

[Gra93] G. Graefe. Query Evaluation Techniques For Large Databases.ACM Computing
Surveys, 25(2):73–170, 1993.

[HHW97] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. In J. M. Peckman,
editor,Proc. of the 1997 ACM SIGMOD Int. Conf. on Management of Data, Tucson,
Arizona, USA, volume 26 ofACM SIGMOD Record, pages 171–182. ACM Press,
June 1997.

[IP95] Yannis E. Ioannidis and Viswanath Poosala. Balancing Histogram Optimality and
Practicality for Query Result Size Estimation. In Michael J. Carey and Donovan A.
Schneider, editors,Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, San Jose, California, May 22-25, 1995, pages 233–244.
ACM Press, 1995.

[JK84] M. Jarke and J. Koch. Query Optimization in Database Systems.ACM Computing
Surveys, 16(2):111–152, 1984.

[Li94] K.-H. Li. Reservoir-sampling algorithms of time complexity O(n(1 + log(N/n))).ACM
Transactions on Mathematical Software, 20(4):481–493, December 1994.

[LSS96] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. SchemaSQL – A Language
for Interoperability in Relational Multidatabase Systems. In T.M. Vijayaraman, A.P.
Buchmann, C. Mohan, and N.L. Sarda, editors,VLDB’96, Proceedings of 22nd Inter-
national Conference on Very Large Data Bases, September 3-6, 1996, Bombay, India,
pages 239–250. Morgan Kaufmann, 1996.

[Olk93] F. Olken.Random Sampling from Databases. PhD thesis, UC Berkeley, April 1993.
[OR86] F. Olken and D. Rotem. Simple Random Sampling from Relational Databases. In

W.W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, editors,VLDB’86 Twelfth In-
ternational Conference on Very Large Data Bases,August 25-28, 1986, Kyoto, Japan,
Proceedings, pages 160–169. Morgan Kaufmann, 1986.

[PGI99] V. Poosala, V. Ganti, and Y.E. Ioannidis. Approximate Query Answering using His-
tograms.IEEE Data Engineering Bulletin, 22(4):5–14, 1999.

[PSC84] Gregory Piatetsky-Shapiro and Charles Connell. Accurate Estimation of the Number
of Tuples Satisfying a Condition. In Beatrice Yormark, editor,SIGMOD’84, Proceed-
ings of Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 256–276.
ACM Press, 1984.

[SCS00] K. Sattler, S. Conrad, and G. Saake. Adding Conflict Resolution Features to a Query
Language for Database Federations. In M. Roantree, W. Hasselbring, and S. Con-
rad, editors,Proc. 3nd Int. Workshop on Engineering Federated Information Sys-
tems, EFIS’00, Dublin, Ireland, June, pages 41–52, Berlin, 2000. Akadem. Verlags-
gesellschaft.

[SS94] Arun N. Swami and K. Bernhard Schiefer. On the Estimation of Join Result Sizes.
In Matthias Jarke, Janis A. Bubenko Jr., and Keith G. Jeffery, editors,Advances
in Database Technology - EDBT’94. 4th International Conference on Extending
Database Technology, Cambridge, United Kingdom, March 28-31, 1994, Proceed-
ings, volume 779 ofLecture Notes in Computer Science, pages 287–300. Springer,
1994.

[TGO99] Kian-Lee Tan, Cheng Hian Goh, and Beng Chin Ooi. On Getting Some Answers
Quickly, and Perhaps More Later. InProceedings of the 15th International Confer-
ence on Data Engineering, 23-26 March 1999, Sydney, Austrialia, pages 32–39. IEEE
Computer Society, 1999.

[Vit87] J.S. Vitter. An Efficient Algorithm for Sequential Random Sampling.ACM Transac-
tions on Mathematical Software, 13(1):58–67, March 1987.

