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Abstract

Scalable data mining in large databases is one of today’s challenges to database technologies.
Thus, substantial effort is dedicated to a tight coupling of database and data mining systems leading
to database primitives supporting data mining tasks. In order to support a wide range of tasks and to
be of general usage these primitives should be rather building blocks than implementations of specific
algorithms. In this paper, we describe primitives for building and applying decision tree classifiers.
Based on the analysis of available algorithms and previous work in this area we have identified
operations which are useful for a number of classification algorithms. We discuss the implementation
of these primitives on top of a commercial DBMS and present experimental results demonstrating
the performance benefit.

1 Introduction

The integration of data mining with database systems is an emergent trend in database research and
development. A tight coupling between data mining and database systems is motivated by several ob-
servations. Today, most data mining systems process data in main memory. Though this results in high
performance as long as enough memory is available, it ignores the fact that most data subject of analysis
has been already stored in database systems and that database systems provide powerful mechanisms for
accessing, filtering and indexing data. In addition, the main-memory or non-coupling approach suffers
from the drawback of limited scalability. If the data set does not fit into the available memory the perfor-
mance decreases dramatically. This problem has been addressed previously by data reduction techniques
like sampling, discretization and dimension reduction. In contrast, SQL-aware data mining techniques
could utilize sophisticated features available in modern DBMS like management of GB data sets, paral-
lelization, filtering and aggregation and in this way improve the scalability. Another reason for building
SQL-aware data mining systems is ad-hoc mining [Cha98], i.e., allowing to mine arbitrary query re-
sults and not only base data. So it would not be necessary to preprocess data just for applying mining
operations. Instead the data set is created “on the fly”.

However, a major drawback of SQL-aware data mining in today’s DBMS is often poor performance.
This is mainly due to the facts, that the rather simple SQL operations like join, grouping and aggregation
are not sufficient for data mining. Therefore, data mining operations have to be implemented as series
of SQL queries, which are treated by the DBMS normally isolated and independent from each other.
In order to achieve a more efficient implementation, functionality of the data mining system should be
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pushed into the DBMS, allowing to utilize knowledge about the operations and their access patterns and
paths. But because there are various data mining algorithms for different problems it is difficult to decide,
which functionality should be integrated into the DBMS.

Based on this observation the main challenge is at first to identify data mining primitives and secondly
to implement them using DBMS extension facilities, e.g. cartridges, extenders or datablades.

We can distinguish at least three levels of data mining support in DBMS:

(1) A first idea is adding new language constructs to SQL as proposed in [MPC96] for association rules.

(2) A second approach is to exploit data mining functionality implemented internally using a special
API like OLE DB for Data Mining [NCBF00] or user-defined types and methods as proposed for
SQL/MM Part 6.

(3) Finally, a DBMS could provide special operators or primitives, which are generally useful for data
mining but not implementing a particular data mining task, e.g. the AVC sets described in [GRG98].

The advantage of approach (3) is the usefulness for a broader range of data mining functions and ob-
viously, both the language and the API approaches could benefit from such primitives. Moreover, if we
consider the complexity of the SQL-99 standard and the extent of the features currently implemented
in commercial systems it should become clear, that the implementation of primitives based on available
DBMS extension technologies seems to be the most promising approach.

In this paper we present results of our work on database primitives for decision tree classifiers. Clas-
sification is an important problem in data mining and well studied in the literature. Furthermore, there
are proposals for classifier operations, e.g. [GRG98], which form the basis for our work. We extend the
idea of computing AVC groups or CC tables respectively to implement a SQL operator for a commer-
cial DBMS. We evaluate the benefit of multi-dimensional hashing for speeding up partial-match queries,
which are typical queries in decision tree construction. Finally, we discuss the implementation of predic-
tion joins – operators for applying an induced classification model on new data.

The remainder of this paper is organized as follows: In section 2 we recall the problem of decision
tree classification, describe previous work and identify potential functions for database primitives. Sec-
tion 3 describes these primitives in detail and discusses their implementation using the Oracle DBMS. In
section 4 we report results of the evaluation of this implementation. Finally, we present related work in
section 5 and conclude in section 6.

2 Decision Tree Classification

Classification is an important data mining problem that has been studied extensively over the years. So,
several classification models have been proposed, e.g. bayesian classification, neural networks, regression
and decision trees. Decision tree classification is probably the most popular model, because it is simple
and easy to understand.

A number of algorithms for constructing decision trees are available including ID3, C4.5, SPRINT,
SLIQ, and PUBLIC. Most decision tree algorithms follow a greedy approach, that can be described as
follows [BFOS84]. In thetree-growingphase the algorithm starts with the whole data set at the root
node. The data set is partitioned according to a splitting criterion into subsets. This procedure is repeated
recursively for each subset until each subset contains only members belonging to the same class or is
sufficiently small. In the second phase – thetree pruningphase – the full grown tree is cut back to
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prevent over-fitting and to improve the accuracy of the tree. An important approach to pruning is based
on the minimum description length (MDL) principle [MRA95].

During the tree-growing phase the splitting criterion is determined by choosing the attribute that will
best separate the remaining samples of the nodes partition into individual classes. This attribute becomes
the decision attribute at the node. Using this attributeA a splitting criterion for partitioning the data is
defined, which is either of the formA < v; v 2 dom(A)) for numeric attributes orA 2 V (V � dom(A))
for categorical attributes. For selecting the best split point several measures were proposed, e.g. ID3 and
C4.5 select the split that minimizes the information entropy of the partitions, while SLIQ and SPRINT
use the gini index. For a data setS containingn records the information entropyE(S) is defined as
E(S) = �

P
pi log2 pi wherepi is the relative frequency of classi. For a split dividingS into the

subsetsS1 andS2 the entropy isE(S1; S2) = n1
n E(S1) +

n2
n E(S2). The gini index for a data setS

is defined asgini(S) = 1 �
P

p2i and for a splitginisplit(S) = n1
n gini(S1) +

n2
n gini(S2). Once an

attribute is associated with a node, it needs not be considered in the node’s children.

procedure BUILD TREE (data setS)
if all records inS belong to the same class

return
foreach attributeAi

evaluate splits on attributeAi

use best split found to partitionS into S1 andS2
BUILD TREE (S1)
BUILD TREE (S2)

(a) Tree building

procedure PRUNETREE (nodeN )
if N is leaf

return C(S) + 1

minCost1 := PRUNETREE (N1)
minCost2 := PRUNETREE (N2)
minCostN := min(C(S) + 1;

Csplit(N) + 1 +minCost1 +minCost2)

return minCostN

(b) Tree pruning

Figure 1: Algorithms for decision trees

The most time-consuming part of decision tree construction is obviously the splitting point selection. For
each active node the subset of data (apartition) fulfilling the conjunction of the splitting conditions of the
node and its predecessors has to be constructed and for each remaining attribute the possible splits have
to be evaluated. Though selecting the best split point based on the measures described above requires
no access to the data itself, but only to statistics about the number of records where a combination of
attribute value and class label occurs. This information can be obtained from a simple table consisting
of the columnsattrib-name, attrib-value, class-labelandcount. This structure is described in [CFB99]
asCC tableand in a similar form asAVC group(Attribute-Value-Class) in [GRG98]. It could be created
using a SQL query of the following kind[CFB99]:

select ’A1’ as aname, A1 as avalue, C as class, count(*)
from S
where condition
group by A1, C

union all
select ’A2’ as aname, A2 as avalue, C as class, count(*)
from S
where condition
group by A2, C
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union all
...

The optimizers of most database systems are usually not able to construct a plan consisting of only a
single scan: typically at least for each grouping a separate scan is required. Thus computing the statistics
table in a single scan would be a good candidate for a classification primitive as already observed in
[CFB99].

An alternative approach would be a primitive that returns directly the split criterion. However, as
already mentioned the individual classification algorithms differ in the measure used for choosing the
spit. Thus, a primitive which computes only the necessary statistics supports a wider range of algorithms
than a specialized primitive.

Considering the queries for selecting the examples belonging to a partition of a node another
observation holds. These queries are typically partial-match queries with a condition of the form:
P1 ^ P2 ^ � � � ^ Pm wherePi is a predicateAj�v; � 2 f<;>;=; 6=g orAj 2 V andm � n, wheren is
the number of attributes. For large data sets where a full scan is too expensive an appropriate access path
(index) is required for an efficient evaluation. However, simple one-dimensional indexes are not very
useful, because apart from the root node and its direct children all other nodes require multi-dimensional
selections. Thus, a second potential primitive for classification is a filtering operation for obtaining the
partition of a node by implementing a partial-match query, possibly based on a special index structure.
The node statistics primitive could benefit from such a operation because the statistics is computed only
for the active partition (Fig. 2).

A1 = 0 A1 = 3
A1 = 2

A2 = 1 A2 = 0 A3 = 0 A3 = 1

A1 = 0

A1 = 0 ^A2 = 1

A1 = 3 ^A3 = 1
c1 c2

c3

c4 c5

Figure 2: Computing node statistics

In order to prevent over-fitting of the training data, the tree from the growing phase is is pruned by
applying the minimum description length (MDL) principle. The basic ideas is that the tree is the best
one, which can be encoded using the smallest number of bits. The cost of encoding a tree – called MDL-
cost – is computed from ([MRA95])

� the cost of encoding the structure of the tree, e.g. for a binary tree a single bit can specify the kind
of a node (leaf, internal node),

� the costCsplit(N) of encoding a split at nodeN that depends on the kind of attribute, i.e. for
numeric attributes withv distinct valueslog2(v�1) bits andlog2(2

v�2) for categorical attributes,

� the costC(S) of encoding the classes of records in each node:

C(S) =
X
i

ni log2
n

ni
+
c� 1

2
log2

n

2
+ log2

�
c
2

�( c2)

whereS is the set ofn records belonging to one ofc classes andni is the number of records with
class labeli.
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The MDL-pruning is performed by traversing the tree bottom-up and pruning the children of a nodeN if
the cost of minimum-cost subtree rooted atN is greater than or equal to the cost of encoding the records
directly atN . The cost of a subtree can be recursively computed. Thus, the most expensive operation
during the pruning phase is to compute the costC(S), which requires information about the number of
records belonging to the individual classes in the active partition.

A further task in classification addressed in our work is prediction – applying the induced mining
model on new data. This operation is sometimes calledprediction joinbecause the attribute values of
the new data (the source) are matched with the possible cases from the model. However, this is not the
standard relational join for the following reasons:

� The assignment of class labels to leaf nodes is based on statistical estimations obtained from the
training set. Thus, the predicted classes for a given case are annotated by additional statistics, like
the probability, which is derived from the training data. In most cases, the prediction is not a single
value, but rather a nested table containing classes and probabilities.

� In case of numeric attributes a split is performed by defining a condition of the formA < v for
binary splits orv1 � A � v2 for n-ary splits. During the prediction join the corresponding bucket
for the attribute value of the source data has to be found.

� In order to treat missing values in the source data correctly, aggregating statistics like occurred
frequencies are necessary.

Finally, the implementation of the prediction join depends heavily on the model representation. For ex-
ample, the decision tree could be represented by its nodes and edges as well as the associated conditions
and classes or by materializing the individual combinations of attribute values in the nodes (or more pre-
cisely the splitting points) together with the predicted class label. Given a particular model presentation
a prediction join operator is a further important classification primitive.

3 Primitives: Principle and Implementation

In the previous section we have identified several candidates of primitives for building and applying
decision tree classifiers. In this section we describe now these primitives in more detail and present our
implementation based on Oracle8i.

Let us first consider the filtering primitive supporting partial match queries. LetNi; 0 � i � n

be nodes of a decision treeT with N0 as the root node. With each nodeNi; i � 1 a split condition
is associated in form of a predicatePNi

either asAi = v or asAi 2 V . In addition, we assign to
each node a class labelcNi

that is determined by selecting the most frequent class in the partition of
the node. We denote a sequenceN0N1 : : : Nk; k � n a decision path, if it holds8i; i � 1 : Ni is a
direct descendant ofNi�1 in treeT . Each decision path to a nodeNp implies a conjunctive condition
CondNp = PN1

^ � � � ^ PNp , where each attributeAi in the predicates occurs at most once. With these
definitions we are able to specify the purpose of the filter primitive:

FILTER PARTITION

INPUT: a conditionCondNp

a data setS
OUTPUT: a partitionSp � S

Sp = �Cond(Np)(S)
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In principle, several approaches are possible for implementing this filter primitive: multi-dimensional
indexes like KdB-tree and others, grid files or bitmap indexes. After some experiments with bitmap in-
dexes supported by Oracle (see section 4 for results), we decided to implement a different approach:
multi-dimensional hashing (MDH) [?]. MDH is based on linear hashing, where hash values are bit vec-
tors computed for each attribute. These bit vectors are composed to a single value using bit-interleaving
(Fig. 3).

a1

a2

a3

b1

b1

b2b2 b3

b3

b4

b4

b5b5 b6

b6

b7

b7

b8b8 b9

b9

Figure 3: Bit interleaving in MDH

Let a = (a1; : : : ; an) 2 D = dom(A1) � � � � � dom(An) a multi-dimensional value, andb =Pn
i=0 jdom(Ai)j the number of bits required for encoding the final vector, the composition function

h(a) is defined as follows:

h(a) =

bX
i=0

�
a(imodk)+1 mod 2i=k+1 � a(imodk)+1 mod 2i=k

2i=k

�
2i

As for other hashing schemes the complexity for exact-match queries using MDH isO(1). For
partial-match queries it depends on the number of unknown dimensions (attribute values). Letd be
the dimensionality andu the number of unknown attribute values, then the complexity isO(n1�

u
d ).

Partial-match queries are implemented by setting the corresponding bits in the composed bit vector. For
unknown attribute values all combinations of the possible values have to be considered. Therefore, in
this case the hash function produces actually a set of hash values.

MDH can be implemented on top of a commercial DBMS in different ways. Probably the most
efficient implementation would base on an extensible indexing API as available in Oracle8 or IBM DB2.
Here, several routines for index maintenance (insert, delete, update tuples) as well as scan routines (start,
fetch, close) are provided by the implementor. In addition, an operator (a SQL function) utilizing the
index is defined. This operator could now be used in a query like this:

select *
from data
where mdh match (a1, 1, a2, 2, a3, 0, a4, -1, a5, -1) = 1

In this example the arguments for the functionmdh match are the attribute values, where�1 de-
notes an unknown attribute. Thus, the above query is in fact a rewrite of:

select *
from data
where a1 = 1 and a2 = 2 and a3 = 0
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However, due to the complexity of the extensible indexing API we have chosen a different imple-
mentation strategy for first experiments, which is – to some extent – more portable to other DBMS. The
hash function is implemented as a table functionmdh partial match returning a table of hash values
for a partial match query. For the data table an additional columnhid for storing the hash value derived
from the attributes is required. In this way, a join on the values returned by the hash function and the
hash values stored in the data table can be performed in order to select the affected tuples. Obviously, an
index is required on columnhid for fast access. Thus, the above query is now formulated as follows:

select *
from table (mdh partial match (1, 2, 0, -1, -1)) h, data d
where h.id = d.hid

For Oracle, an additional cast around the function call and a named table type as result type are
required. Moreover, because Oracle supports a collection typearray a more generic function expecting
an array of values as argument can be implemented:

create type iarray t as varray(30) of int ;
create type itable t is table of int ;

select *
from table ( cast (mdh partial match (iarray t (1, 2, 0, -1, -1)))

as itable t) h, data d
where h.id = d.hid

Our approach has several consequences:

� It works only for categorical attributes. Numeric attributes have to be discretized or excluded from
indexing.

� For each tuple the hash value has to be computed in advance, e.g. this could be easily done using
a trigger.

� In the above described form only conditions of kindA = v; v 2 dom(A) are supported.

Whereas the first limitation is inherent to the approach, the third point can be handled by the following
extension. For all values of the domain of an attribute an ordering is defined in order to be able to encode
each value by a single bit position in a bit vector. Thus, for a condition likeA 2 V; V � dom(A) the set
V of values are encoded by bitwise disjunction of all valuesv 2 V as given by:b =

P
v2V 2v . If now

the individual valuesbA1
: : : bAn are used as arguments for the functionmdh partial match , the2

condition is supported as well. We evaluate the performance gain of the MDH-based filter operation in
section 4.

Filtering the partition associated with a node of the decision tree is only the first part of determining
splitting attribute and condition. Both the information entropy and the gini index can be computed from
a table summarizing the number of tuples for each combination of an attribute value and a class label.
Here, all attributes of the data set not already used as splitting attributes are examined. Therefore, for
the partially grown tree shown in Fig. 4(a) and a data set of schemaR(A1; : : : ; An; C) at nodeN3 the
attributesA3 : : : An have to be considered. Assuming a remaining partition of the data set atN3 as given
in Fig. 4(b) the resulting table contains the information shown in Fig. 4(c).

Let Sp � S be a partition of the data setS andCSp the set of class labels occurring inSp. Fur-
thermore, we define a set of attributesA = fA1; : : : ; Amg, a set of valuesV =

S
i dom(Ai) and a
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A1 = 0 A1 = 1

A2 = 0 A2 = 2
A2 = 0

A2 = 1

N3

(a) Decision tree

A3 A4 A5 C

0 1 1 c1

0 1 1 c1

1 1 2 c1

2 0 1 c2

(b) Partition forN3

aname avalue class count

A3 0 c1 2
A3 1 c1 1
A3 2 c2 1
A4 1 c1 3
A4 0 c2 1
A5 1 c1 2
A5 1 c2 1
A5 2 c1 1

(c) Node statistics forN3

Figure 4: Example for node statistics

recordt 2 Sp, wheret(Ai) denotes the value of recordt for attributeAi. We specify the COMPUTEN-
ODESTATISTICS primitive as follows:

COMPUTE NODESTATISTICS

INPUT: a partitionSp
a set of attributesA = fA1; : : : ; Ang

an attributeAC =2 A representing the class label
OUTPUT: a relationSStat� A� V � CSp � N

It holds
(Ai; v; c; count) 2 SStat()

Ai 2 A^ v 2 V ^ c 2 CSp^

count = jftjt 2 Sp ^ t(Ai) = v ^ t(AC) = cgj

One efficient approach for building this table is to use the super group features introduced in SQL-99
and for example supported by DB2 Version 7. As part of an extended group by clause a list of attribute
combinations for creating groups is provided. Thus, the query

select
case

when grouping(A3) then ’A3’ end
when grouping(A4) then ’A4’ end
when grouping(A5) then ’A5’ end
else NULL

end as aname,
case

when grouping(A3) then A3 end
when grouping(A4) then A4 end
when grouping(A5) then A5 end
else NULL

end as value,
C, count(*)

from R
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where condition
group by grouping sets ((A3, C), (A4, C), (A5, C), (C))

returns the result table from Fig. 4(c).
An alternative approach is necessary if the advanced grouping features is not supported as in case of

Oracle8. We have implemented this feature for Oracle as a table function returning a table of objects of
typeavc group , which is defined as follows:

create type avc group t as object (
aname varchar (30), avalue int , class int , cnt int );

create type avc table t is table of avc group t;

The functionavc group requires as arguments a list of attributes which have to be examined, the
attribute representing the class label and an input table. This table could be a temporary view as in the
following query

with pdata as ( select * from data where condition )
select *
from table (avc group ((a1, a2, a3), class, pdata))

But because Oracle does not support temporary views and tables as function parameters a complete query
string has to be given for the input table in our implementation. Thus, the query looks as follows:

select *
from table ( cast (avc group (sarray t (’a1’, ’a2’, ’a3’), ’class’,
’select * from data where condition ’) as avc table t)

In the functionavc group the given query is evaluated and the result is processed. The attribute-
class-count combinations are collected in a three-dimensional array indexed by attribute name, value
and class label. The count values are stored in the fields itself. The cardinalities of the three dimensions
could be estimated in advance from the table statistics. In very most cases, this array is small enough
to fit into main memory, e.g. for 20 attributes with at most 10 distinct values and 10 classes the size is
20 � 10 � 10 � 4 Bytes� 8 KBytes. After processing the whole result set and collecting the counts the
array is used to build the resulting node statistics table, which is finally returned to the caller (Fig. 5).

We will show results of the performance evaluation of the implementation of this primitive in sec-
tion 4.

As mentioned in section 2 computing the MDL-cost of a subtree is a further candidate for a primitive.
In particular, cost of encoding records involves the number of classes, the number of records belonging
to an individual class and the total number of records associated with the active node. Obviously, this
can be easily combined with the COMPUTENODESTATISTICS, so that both statistics are obtained in one
scan. We omit the details here, because of the straight-forward implementation. The cost value computed
for a node is stored along with the node in the tree. Based on this, the total MDL cost for each subtree
are easily computable during the pruning phase and the pruning can be performed.

After building the decision tree, the induced model can be used to predict the class of new data
records, where the class attribute is missing. For this operation – called prediction join – the model has
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procedure COMPUTENODESTATISTICS (queryq, attribute setA, class attributeC)
initialize arraycount
execute given queryq
foreach tuplet = (a1; : : : ; an; c)

foreach attributeA1; : : : ; An 2 A

count[Ai][ai][c] += 1

foreach attributeAi

foreach valuev 2 dom(Ai)

foreach class labelc 2 dom(C)

if count[Ai][v][c] > 0

produce tuple(Ai; v; c; count[Ai][v][c])

Figure 5: Algorithm for computing the node statistics

to be interpreted, i.e. by following a path of the tree where for each node the associated split condition is
evaluated. We can define the semantics of this operation as follows:

PREDICTION JOIN

INPUT: a decision treeT consisting of nodesN0 : : : Nn

a source relationR(A1; : : : ; Am)

OUTPUT: a relation of predictionsRP (A1; : : : Am; AC)

It holds:8t 2 R 9tP 2 RP : there is a pathN0N1 : : : Nk; k � m ^ k is maximal
^8i; i = 1 : : : k : t(Ai) = tp(Ai) ^ CondNp(tP ) = true ^ tP (C) = cNi

Because the implementation of the prediction join depends on the model representation, an appropriate
structure is required. There is a standard proposal for representing classification tree defined as part of the
Predictive Model Markup Language (PMML)[]. However, for storing the tree in a RDBMS a flat table
structure is necessary. In Fig. 6 a possible structure is shown together with the corresponding tree. Each
tuple in the table represents an edge of the tree from nodeparent to nodenode. Each edge is associated
with a condition, where the attribute name is stored in the fieldattrib and the domain for the split is
represented by the values of the fieldsminval andmaxval. The fieldclassholds the label of the most
frequent class in the partition associated with the nodenodeof the edge together with the probability
prob of the class occurrence.
As the other primitives the prediction join is implemented as a table function. Probably, the best solution
would be a function which accepts tables as parameters. But due to the lack of support in current DBMS
we have chosen the same approach as already presented for theavc group function: the source and
model tables are passed as query strings. A second restriction is the strong typing of the function result.
It is not possible to construct a table with a schema that depends on the schemas of the input tables. So,
a simple solution is to return a table of a fixed type, e.g. consisting of the primary key of the source table
– which is specified as an additional parameter of the function – and the predicted class label.

create type pred t as object (pkey int , class int , probability float );
create type pred table t is table of pred t;

The following example shows the usage of the prediction operation.

select id, clabel
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A1 � 50 A1 > 50

A2 = 0
A2 = 1

N0

N1

N2[c1]

N3[c1] N4[c2]

(a) Decision tree

node parent attrib minval maxval class prob

N0 ? ? ? ? c1 0.70
N1 N0 A1 MIN 50 c1 0.86
N2 N0 A1 50 MAX c2 0.66
N3 N1 A2 -1 0 c1 0.98
N4 N1 A2 0 1 c2 0.60

(b) Table representation

Figure 6: Representation of a decision tree

from table ( cast (prediction join (’model’,
’select id, a1, a2, a3 from source’, ’id’)) as pred table t)

The pseudo-code for the prediction join is given in Fig. 7. We assume a model representation as described
above (Fig. 6). For each tupletS = (a1; : : : ; am) of the source relation the nodes are selected, whose
condition is fulfilled by the attribute values of the given tuple. This is performed by the following query
q(tS):

select *
from Model
where (aname= 0

A1
0 and minval < A1 and maxval >= A1) or

(aname= 0
A2

0 and minval < A2 and maxval >= A2) or
: : :

(aname= 0
Am

0 and minval < Am and maxval >= Am)

These candidate nodes are ordered by their node-id. Next, the candidate nodes are processed in this order
as follows: Starting with the root node the next node with a parent-id equal to current node-id is obtained
until no further node can be found. In this case, the class and probability values are assigned to the active
source tuple. This approach reduces the total number of nodes, which have to be examined.

4 Performance Evaluation

In order to evaluate the performance of our primitives compared to pure SQL queries we performed sev-
eral experiments. For all tests we used an Oracle8i-DBMS Rel. 8.1.6 runnung on a PentiumIII/500MHz
Linux machine with 512 MB of RAM. The primitives were implemented in C as user-defined table func-
tions using the Oracle Call Interface (OCI). The synthetic test data sets were constructed as tables with
10 and 20 attributes and different numbers of tuples up to 100,000. Each attribute contained only dis-
crete values of the interval 0: : : 3. For the tests of the MDH-based implementation a further attribute
containing the hash values was added to the tables. The hash values were computed in advance and an
index was created on this attribute.

In the first experiment we studied the performance of different strategies for partial-match queries:
a simple full table scan, the usage of bitmap indexes and the MDH-based primitive as described in
Section 3.
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procedure PREDICTIONJOIN (source tableS, model tableM )
foreach tupletS = (a1; : : : ; am) 2 S

execute queryq(tS)
fetch tupletM = (n; p; c; prob)

node := n

class := c

finished :=false
do

do
fetch tupletM = (n; p; class; prob)

if tuple not found
produce result tuple(a1; : : : ; am; c)
finished :=true

while p 6= node

node := n

class := c

while :finished

Figure 7: Algorithm for prediction join

Fig. 8(a) shows the running times (for 100 queries) of these strategies for a table of 100,000 tuples
with different numbers of undefined attributes. Here, the value 0 at the x axis corresponds to an exact-
match query, the value 10 means a full scan in the case of a table consisting of 10 attributes.

If all or nearly all attributes are given in the query, the MDH approach needs approx. 1.2 seconds for
100 queries, while the scan needs 17 and the access via bitmap indexes needs 19.5 seconds. As expected
the elapsed times for the table scans are nearly constant with the growing number of undefined attributes.
In contrast, the MDH algorithm only produces approximately similar times for up to 5 undefined dimen-
sions, before the execution times increases. This may be caused by our implementation, because we rely
on a traditional b-tree index to find the tuples belonging to the calculated hash values. A second reason
could be the inefficient way of returning the table of hash values from the table function, because the
table is constructed first and then returned instead of using a iterator-like interface. Fig. 8(b) shows the
running times from the experiment with 20 attributes with comparable results.

The difference between the table scan and the bitmap index supported search was of almost no
importance in these cases. One conclusion is that the influence of the total number of attributes on the
behavior of MDH is not significant. The main factor is the number of unspecified attributes. Here, all
test cases produced an excellent performance as long as there are not more than 5 undefined attributes,
which corresponds to a selectivity of 50%. However, we believe that a more efficient implementation,
e.g. based on the extensible indexing API, could improve this factor.

In the second experiment we evaluated two strategies for computing node statistics: The UNIONALL

approach (see Section 2 and the AVCGROUP primitive. We used the same data sets as described above
and compared the running times of queries with different number of grouped attributes. In each query the
attributes not involved in grouping were used in the selection condition. As shown in Fig. 9 the running
times (again for 100 queries) increased nearly linear with the number of dimensions to be grouped in
the case of using UNIONALL. For all possible numbers of groups the AVCGROUP strategy led to faster
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Figure 8: FILTERPARTITION evaluation results for 100,000 rows

execution. For the data set with 20 attributes similar results were observed.
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Figure 9: COMPUTENODESTATISTICS evaluation results for 100,000 rows

In the third experiment we studied the effects of the two primitives on a complete decision tree
algorithm. For this purpose, we implemented the ID3 algorithm in C++ using SQL queries for filtering
the partitions of each node and computing the node statistics. So, no training data has to be hold in
memory, only the tree is constructed as main-memory structure. In our implementation no pruning was
performed and we considered only categorical attributes. We generated synthetic data sets using the data
generator from the IBM Quest project1 and discretized the numeric values into 4 distinct categorical
values. The experiments were performed with data sets of 3,000 up to 50,000 tuples and 9 attributes. We
evaluated 4 different strategies of the classifier: SCAN is implemented using pure SQL where the entropy
for each attribute is computed by a separate query. For MDH the entropy is computed in the same way

1http://www.almaden.ibm.com/quest
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(by a separate query), but the filtering of partitions is performed by the MDH primitive if the number of
unspecified attributes as less than 5. The UNION strategy is based on the COMPUTENODESTATISTICS

primitive, but uses the UNIONALL approach. Finally, the AVC strategy computes the node statistics using
theavc group function.
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Figure 10: ID3 evaluation results

Fig. 10 shows times for inducing a decision tree from a training set of 50,000 tuples. Both implemen-
tations based on the primitives provide a significant mperformance improvement compared with their
pure SQL counterparts. Because in both strategies UNION and AVC a scan-based filtering is performed
a further improvement could be achieved by using MDH for filtering the partitions in AVC. However,
we were not able to evaluate this promising strategy due to the limitations of the current Oracle release,
which does not support recursive calls of external functions.

5 Related Work

Many approaches have been proposed to constructing decision tree classifiers in general and particu-
larly to improving scalability of classification. Most well-known algorithm like CART [BFOS84], ID3
[Qui86], C4.5 [Qui93] assume the data to be in memory and therefore are able to work only with rela-
tive small data sets efficiently. In the database research scalability is addressed by developing algorithms
based on special data structures, e.g. SPRINT [SAM96], SLIQ [MAR96] or optimistic tree construction
[GGRL99]. In [GRG98] the RainForest framework is described that introduces an AVC-group data struc-
ture providing sufficient statistics for determining the split and algorithms for constructing this structure.
[CFB99] describes a similar data structure called CC table and a middleware based on a scheduler ensur-
ing optimized scans and staging. Whereas the RainForest framework does not address SQL databases,
the middleware is implemented on a commercial DBMS. Our COMPUTENODESTATICTICS is derived
directly from this both approaches. Other approaches consider approximation techniques for scaling up
the classification, e.g. sampling [ARS98] and discretization, as well as permitting the user to specify con-
straints on tree size[ARS98]. Particularly, approximation techniques could be supported by the database
systems very well and thus could lead to further primitives.

The integration of data mining and database systems resulting in SQL-aware data mining systems is
discussed in [Cha98]. This paper argues for identifying and unbundling a set of new SQL operators or
primitives from data mining procedures implementing individual algorithms. Our approach of primitives
follows this idea.
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Some further examples of tightly coupled data mining techniques are presented in [STA98] for as-
sociation rules and in [OC00] for clustering. Particularly, for the problem of finding association rules
several primitives has been identified and implemented as table functions in DB2. Because of this sim-
ilar approach we beware that supporting table functions and/or table operators [JM99] is an important
issue for implementing data mining primitives efficiently. An ideal supplement to this kind of extension
mechanism are user-defined aggregates. An example of a powerful framework for building aggregates
and the application in data mining is presented in [WZ00].

6 Conclusions

Tight coupling of data mining and database systems is – beside improving data mining algorithms – a
key issue for efficient and scalable data mining in large databases. Tight coupling means not only to link
specific data mining algorithms to the database system [HK01], e.g. as stored procedures, but rather that
essential data mining primitives supporting several classes of algorithms are provided by the DBMS.
Two important tasks convoy the development of such kind of primitives: (1) analyzing data mining
functions and identifying common primitives and (2) providing extension mechanisms for an efficient
implementation of these primitives as part of the database system API.

In this paper we have presented first results of our work on primitives for decision tree classification.
These primitives implement special database operations, which support the SQL-aware implementation
of a wide range of classification algorithms. Based on the primitives additional operations are possible.
An example are operations for computing the splitting measures (gini index, information entropy), which
could be implemented as user-defined aggregation functions for the node statistics table. Moreover, we
are convinced that other data mining techniques could benefit from the described primitives as well. For
example, partitioning of data sets is a common task and statistics information like node statistics are
needed in various mining algorithms. Finally, data preparation as an important preprocessing step of data
mining is a further application for databases primitives [?].

The experimental results have demonstrated the benefit of the primitives, but also the need for an
implementation tighter integrated with the database system. Modern object-relational systems provide
already some extension facilities supporting this task (user-defined table functions, user-defined aggre-
gates, extensible indexing). However, our experiences have shown that still more advanced extension
APIs are required, e.g. for implementing user-defined table operators which are able to process tables
or tuple streams as input parameters. Furthermore, optimizing queries containing this kind of operators
is an important but still open issue. Here, techniques considering foreign functions [CS93] or expen-
sive predicates [Hel98] during optimization have to be extended. In our future work, we plan to address
this issue. Another task is to exploit the extensible indexing for a more efficient implementation of the
multi-dimensional hashing.
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