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ABSTRACT
The KDD process is a non-trivial, iterative, interactive and
multi-step process, that requires the development of a unify-
ing model. This model have to ensure an uniform description
of data and patterns and the control of the manipulation of

the data and patterns. Thus, the model de�nes operations
within the pattern and data, as well as transition operations
between data and patterns.
This paper proposes a framework consisting of a model

view, a data view and a process view. It focuses on the

model and data view. The model view contains a set of min-
ing models, which contain all information of a data mining
result, that are based on constraints. The proposed model
algebra uses concepts of constraint databases as well as col-
lective and parallel data mining. The whole process is sup-
ported by using operations between data and model view.

Keywords
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Mining Model

1. INTRODUCTION
Knowledge Discovery in Databases (KDD) is a non-trivial,

multi-step process [6]. The process consists of data integra-
tion, preparation and transformation, data mining as well

as evaluation and presentation of the data mining results.
These steps are processed iteratively and interactively. An
analyst uses di�erent techniques and approaches during the
data analysis. For instance, the user can at �rst create a
classi�cation model for customers, afterwards he uses the
created model to get all \highrisk" customers. The next

step could be the analysis of the buying behavior of this
customer group by means of a association rule analysis.
A KDD process requires an eÆcient exchange of mining

models and data sets between di�erent analysis methods and

�Research was supported by the grant FOR 345/1 from the
German Research Council(DFG).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2002,Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

Data View

relations

relational algebra

mining models

model algebra

Model view

user interaction

user

Process view

controls the views

mining step

model−data−join

Figure 1: Three view architecture

programs. Therefore, there is a need for a unifying frame-
work, that provides a uniform data structure for all data
mining patterns, operations to manipulate these patterns as
well as the transition to the data level and from the data

level. Furthermore, the data level should be included in the
framework, because the preparation and integration of data
takes a lot of time during the data analysis. The third part
is a control mechanism managing the whole process by using
the operation of the other parts.
A three view architecture is proposed, that consists of pro-

cess view, model view and data view and operations between
the views, to meet these requirements. Figure 1 illustrates
the architecture.
The user interacts with the process view, which o�ers op-

erations supporting management and controlling of KDD
processes. It combines di�erent processes and results by us-

ing the methods o�ered by the data view and themodel view.
Di�erent presentation modes support the analysis tasks. It-
eration, condition, join and split nodes are used as control
mechanisms. The control mechanisms of the process view
are not discussed in this paper, but rather the foundations

of the model view and the data view.
The raw data sets are described in the data view. The

relational data model is used in the proposed architecture,
because it provides a formal foundation for the data view
and provides the relational algebra to manipulate the data
objects.

The third view in our framework is the model view. The
model view consists of a set of mining models which con-
tains all information about a mining result. A mining model
contains the patterns, information about the pattern, e.g.
an interestingness function as well as additional properties.
Properties are for instance class labels or cluster information

like means or medians. The patterns are modeled as tu-



ples of linear inequality constraints. This kind of modeling

allows a uni�ed presentation of the results of mining algo-
rithms. Based on this model structure an algebra is de�ned
which provides operations for modi�cation and combination
of mining models.

1.1 Outline of the paper
Following the introduction in Section 1 the remaining part

of the paper focuses on the model view. In the following Sec-
tion 2 the use of constraints as pattern language is motivated

and basic concepts of constraint databases are introduced.
In Section 3 at �rst the proposed data model of the model
view is informally discussed and a formalization of the min-
ing models is shown afterwards. The algebra within the
model view data model is introduced in section 4. Section 5
provides an overview of the related work. The paper ends

with a conclusion and an outlook to the future work and
possible optimization issues in the framework.

2. CONSTRAINT DATABASES AND THEIR
APPLICATION IN KDD

Before the discussion of the framework an introduction is
given to concepts of constraint databases and their applica-
tion in the KDD area. In data mining the mined patterns are

very di�erent, but every pattern describes a possible subset
of the data. Constraints are used to describe possible in�-
nite data sets, thus, they are a natural choice for description
of results of data mining algorithms. The concepts of con-
straint databases provide a powerful basis for manipulation
these patterns.

2.1 Constraints and patterns
First we de�ne the concepts constraint and constraint k-

tuple as they are used in the constraint database research
area. A constraint can be used to describe a possible in�nite
data set. Linear inequality constraints, a special class of
constraints, are suÆcient to describe mining results, as they
can represent most of the used shapes [11]. Commonly, they
are de�ned as:

De�nition 1. Let 
 be a vocabulary. A constraint over

 is an atomic �rst-order formula over 
, or the negation

of an atomic formula [19]. Assuming the attribute set R =
fA1; : : : ; Akg [19]. A linear inequality constraint over R is a
condition p � c, where p is a function a1A1+ : : :+akAk+a0
with real coeÆcients.

Assume a relation with the schema R = fA1; : : : ; Akg. A
constraint k-tuple is used to describe a subset of this rela-
tion. As the patterns can be convex or concave the notion
of the extended constraint k-tuple [3] is used. Formally, the

extended constraint k-tuple is de�ned as following.

De�nition 2. A constraint k-tuple, in variables A1; : : : ; Ak,

over vocabulary 
, is a �nite conjunction �1^: : :^�n, where
each �i, for1 � i � n, is an 
-constraint. Furthermore, the
variables in each �i are among A1; : : : ; Ak. An extended

constraint k-tuple is de�ned as the constraint k-tuple ex-
cept, ^ as well as _ are used as connectives between the
constraints.

This de�nition allows the union of several constraint k-
tuples in one extended constraint k-tuple, which can repre-

sent complex objects. In our case the extended constraint

k-tuple consists of a disjunction of conjunctions of linear in-

equality constraints. Such a tuple describes one pattern of
a mining result.
After introducing the extended k-tuples as pattern de-

scription their manipulation has to be discussed. For this
purpose the concepts of constraint databases can be used,
that are described in the next section.

2.2 Constraint Databases
Constraint databases(CDB) were introduced in [12]. One

concept, the constraint k-tuple1, is already de�ned in the
previous section. As some concepts of CDB are used in the
next sections, their de�nition is given here. Other important

terms are de�ned for instance in [14].

De�nition 3. A constraint relation of the arity k, over

, is the �nite set r = ft1; : : : ; tmg, where each ti, for
1 � i � m, is a extended constraint k-tuple in the same
variables A1; : : : ; Ak. An extension for an extended k-tuple
t 2 r, denoted by ext(t), is set of relational tuples, which
makes the formula t true in a certain domain [19]. The ex-

tension of a constraint relation r is a nested relation n =
fext(t1); : : : ; ext(tm)g [3].

As every tuple represents a pattern, the nested relational

interpretation of the constraint relation is useful. A con-
straint relation is then the representation of a set of patterns.
Within the nested interpretation an extended constraint al-
gebra [3] is used to manipulate the constraint relation. In

this algebra are besides tuple operations also set operations
de�ned, which are used in the proposed framework, thus,
the following de�nition gives an overview over selected op-
erations.

De�nition 4. Selected set and tuple operations of the ex-
tended constraint algebra [3]:
Set Selection: ��sQ1�Q2

(r1) with �(Q1) � �(Q2)
2:

r = ft : t 2 r1; ext(Q1(t)) � ext(�[�(Q1)](Q2(t)))g

and �sQ1\Q2
(r1) with �(Q1) = �(Q2):

r = ft : t 2 r1; ext(Q1(t)) \ ext(Q2(t)) 6= ;g:

Set Di�erence: r1�n
sr2 with �(r) = �(r1) = �(r2):

r = ft : t 2 r1; 6 9t
0 2 r2 : ext(t) = ext(t

0
)g:

Projection: ��[xi1 ;::: ;xip ](r1) with �(r1) = fx1; : : : ; xkg:

r = f�[xi1 ;::: ;xip ](t) : t 2 r1; ext(�[xi1 ;::: ;xip ](t) 6= ;)g

In this section the foundations of constraint databases were
introduced as used in the proposed model. In order to sup-

port data mining the foundations have to be extended to
achieve a suÆcient data model, which is described in the
remaining part of the paper.

3. THE MODEL VIEW
The model view consists of a set of mining models. A

mining model is supposed to contain all information about
the results of a run of a data mining algorithm. It contains

the patterns that are modeled as constraint k-tuples over

1In the remaining paper constraint k-tuple is equivalent to
extended constraint k-tuple
2Q denotes either a tuple or the projection of tuple



the input attribute set. These constraint k-tuples describe

the sets of the data points in the single patterns. An in-
terestingness function value and properties are assigned to
each pattern.
Assuming R = fA1; : : : ; Akg is a set of attributes which

describes the input data of the model, then a mining model
schema is de�ned as following:

De�nition 5. A mining model schema is an attribute set
M = fCR; I; L1; : : : ; Lng. CR denotes the pattern attribute
on R and its domain dom(CR) contains all possible con-
straint k-tuples in attribute set R. The interestingness func-

tion I maps a constraint k-tuple to the domain [0; 1] accord-
ing to the mined relation r over R. L1; : : : ; Ln are addi-
tional properties of the patterns, which can contain derived
information.

Based on the de�nition of a model schema a model is
de�ned as following: A model is an instance of a model
schema and is created from the relation r with name R and
the pattern description is a subset of all possible constraint
k-tuples in CR. Each pattern has a quality value w.r.t. r

and additional properties.

De�nition 6. A mining model instance over a relation r

with schema R is de�ned as

m = fp : p[CR] 2 dom(CR);

p[I] = I(p[CR]; r)l1 2 dom(L1); : : : ; ln 2 dom(Ln)g:

The model view consists of a set of mining models, which
is derived from the data sets of the data view. The schema
are model names together with their attributes.

De�nition 7. The schema of the model view is the set of
model names and their assigned attributes. The instance

of the model view is the set of models over the schema as
de�ned above.

Assuming model m is a classi�cation model. A classi�ca-
tion pattern within the model is represented as the following:

p = (A1 � 45 ^A2 � 500; 0:98; highrisk):

A tuple t of a relation r belongs to class \highrisk", if t[A1] �
45 ^ t[A2] � 500 evaluates to true. The accuracy in the

training set is 98%.
A cluster description bene�ts from the extended k-tuple

notion, as it allows the combination of several convex shapes
by using a disjunction of conjunctions of constraints. For
instance:

(c11 ^ : : : ^ cn1 _ c12 : : : ^ cnn ; 0:89; 34):

c denotes a constraint and 0:89 shows the cluster quality.

4. OPERATIONS
In the proposed framework the process view controls the

other views, which provide operations on their elements and
transition operations. Thus, there are operations on the

mining models, the data as well as operations between data
and models. The operations on the data are de�ned by
the relational algebra and its extensions like grouping and
aggregation.
The operations over models (Section 4.1) are based on

the constraint algebra and the ideas of collective data min-

ing [13] and distributed data mining[17]. The operations

form an algebra and support the properties: closure, eÆ-

ciency and a minimum of operations as well as transition
between model and data view.
The operations Selection �, Projection �, Natural Join

./, Union [, Di�erence � and Renaming � are used in the
model algebra. In Section 4.2 the operations between the
data view and the model view are de�ned. These transition

operations are mining �, that creates a model from the data
and model-data-join ./md, which produces the extensions for
a model.

4.1 Operations on Mining Models

4.1.1 Selection
The selection operation enables the analyst to select the

most interesting patterns in his view. There are three pos-
sibilities of selections of a model: constraint selection, in-
terestingness selection and label selection. The constraint
selection extracts tuples from the model using the set se-
lection. Using the set selection it is possible to de�ne the

spatial relationships intersection, disjunction, containment
and equivalence [3]. The second type of selection is the in-
terestingness selection which selects the patterns according
to their value of the interestingness function. A predicate
pred(I) = i(c; s) � k where k 2 [0; 1] and � 2 f�; <;=; 6=
; >;�g is used as selection condition. Furthermore, we can

use the label attributes in a relational selection condition.
cscond denotes a constraint selection condition and cond is
relational selection condition. Formally, the selection oper-
ation is de�ned as following. The term m[CR] denotes the
projection to the constraint attribute of the model m.

De�nition 8. Assuming the model m over the relation r

with schema �(m) = fCR; I;Lg and L = fL1; : : : ; Lng. The
model selection � is de�ned as

�cscond(m) = ft : t 2 p; t[CR] 2 ��
s
cscond(m[CR])g)

�pred(I)(m) = ft : t 2 m; pred(t[I]) is trueg

�cond(L)(m) = ft : t 2 p; cond(t[L]) is trueg:

Assume the model m is representing cluster patterns and
all clusters which are contained in data set described by

P = (100 � A1 � 1000^200 � A2 � 2000) shall be selected.
The according query is: �t�P (m).

4.1.2 Projection
The projection operation is the second proposed opera-

tion, which modi�es the patterns in the way, that the pat-
terns are only valid over the projected data set. The con-

straint projection requires the recomputation of the inter-
estingness values and the properties. The operation is nec-
essary to support the union operation. The projection is
restricted, so that always at least the interesting function
values and patterns are existent. Assume a attribute set
R = fA1; : : : ; Am; Am+1; : : : ; Akg.

De�nition 9. Given a modelm with schema �(m) =M =
fCR; I; L1; : : : ; Ll; Ll+1; : : : ; Lkg. The projection � is de-

�ned as:

�A1;::: ;Am(m) = ft : t[CA1;::: ;Am ] 2 ��A1;::: ;Am(CR);

t[I] = I(t[CA1;::: ;Am ; r)g

�L1;::: ;Ll(m) = ft[CR; I; L1; : : : ; Ll] : t 2 mg:



4.1.3 Natural Join
After the discussion of the operations that modify or query

one model, operations are de�ned which combine models.

The combining operations are quite di�erent to the former
operations because they include special algorithms which
de�ne their semantic. The natural join operation is the �rst
operation to be discussed. Assuming there are two relations
r1 and r2, over both relations a model is de�ned. Each of
them has the same interestingness function and the same

properties. Furthermore, it is required that R1 \ R2 6= ;.
Then we can use the information from both models, a sam-
ple of the combined data set and a collective data mining
(CDM) algorithm [13] to create the joined mining model.
Thus, the join operation is used to extend the description

of the pattern by new attributes. The extension of the new
model is de�ned by the data mining algorithm which per-
forms the computation of the new patterns, the interest-
ingness function as well as the labels. Each of the joined
models have to be of the same type. The join operation and
the special algorithms require further research in combining

mining results.

De�nition 10. Let R1 and R2 be attribute sets of the re-
lations r1 and r2, respectively. Further it holds R = R1[R2.

And assuming m1 and m2 are mining models over r1 and r2
and it holds I1 = I2 and L1 = L2. Then, the natural join
./ operation is de�ned as:

m1 ./ m2 = ft : t[CR] 2 dom(t[CR1[R2
]); the other

attributes are created by a

CDM algorithmg

�(m1 ./ m2) = fCR; I1;L1g:

By this de�nition the semantic of the operation is depending
on the implementing CDM algorithm, but the structure of
the inputs and outputs can be de�ned, so the analyst is
enabled to follow the operation.

4.1.4 Union
The join operation de�nes the extension of the attribute

set of the model by combining two models over two relations.
The union operation is also de�ned on two models, but these
are de�ned on relations with an identical attribute set. This

operation uses distributed data mining (DDM) algorithms
to get the results. Another possibility is the use of meta-
learner algorithms (e.g. [17]). Requirements are { equivalent
to the join operation { identical interestingness function and
identical labels in the two models. Furthermore, the models
have to be of the same type.

De�nition 11. Assuming the models m1 and m2 have the
same schema M1 = M2 = fCR; I; L1; : : : ; Lng and they are
of the same type. The union operation [ is de�ned as:

m1 [m2 = ft : t is de�ned by a DDM algorithm with

t[CR] 2 dom(CR); t[I] 2 [0; 1];

t[L1] 2 dom(L1); : : : ; t[Ln] 2 don(Ln)g

The resulting schema is M1 =M2 = �(m1 [m2).

4.1.5 Difference
The di�erence operation is another operation, which can

be de�ned as a constraint algebra operation set di�erence.

The di�erence is de�ned between two models which have the

same schema. The di�erent patterns are de�ned over the

union of both relations, so we can compare patterns only by
the describing constraint tuple. The set di�erence returns all
patterns whose extensions are not identical. Thus, the result
of the model di�erence are all patterns with interestingness
over the union of the mined relations. This operation is
reasonable, if the analyst wants to check if a model contains

new ideas.

De�nition 12. Let m1 and m2 be two models with the
same schema �(m1) = �(m2) = fCR; I; L1; : : : ; Lng over

the relation r1 and r2, respectively. The di�erence � is
de�ned as following:

m1 �m2 = ft : t 2 m1; t[CR] 2 (m1[CR]n
s
m2[CR]);

t[I] = i(t[CR]; r1 [ r2)g:

The intersection operation can be derived from the di�erence

operation. In this case the intersection is de�ned as

m1 \m2 = m1 � (m1 �m2):

This intersection is also a set intersection, that means, all
patterns that exist in each of both models are in the result
set.

4.1.6 Renaming
The de�nition of the renaming operation �B A is straight-

forward and is based on the renaming operations in con-
straint databases and relational databases, respectively. The
renaming can be applied to the constraint attribute by using
the constraint renaming, which replaces all occurrences of A
with B in all constraint tuples.

4.2 Operations between Models and Data
Besides the operations of the model algebra the proposed

framework includes two operations for transition between
the data and model view: the mining step which creates a
mining model from a relation and the model-data-join which
gets the extensions of the pattern and applies the properties
to the data. The latter operation can also be used to test a
predictive model (e.g. a classi�cation) or to predict a new

data set with help of a predictive model.

4.2.1 The Mining Step
The mining operation creates a mining model from a re-

lation r. The parameter t of the operation supports the
speci�cation of the kind of the mining operation, for in-
stance classi�cation. The resulting model is of the type t

and contains patterns over the attribute set of the schema

R = fA1; : : : ; Akg. The interestingness function and the la-
bels are chosen according to the type of the model and the
operation. A following selection on the interestingness val-
ues can be used to express some thresholds for the mining
algorithms. Thus, the mining algorithm is processed with

the selection thresholds during the evaluation of the whole
expression.

De�nition 13. The mining operation � of type t uses as
input a database instance r with the schema R. It creates

mining model m of type t over the instance r:

m = �t(s):

The model m has the schema M = fCR; I; L1; : : : ; Lng.



4.2.2 Model-Data-Join
The transition from the model view to the data view is

de�ned by the model-data-join which creates a relation con-

taining the tuples represented of a pattern. The tuples are
extended by the labels of the containing pattern. The result-
ing relation represents the extension of the pattern according
the relation to be joined.
As the mining-models can be divided into two groups {

predictive and descriptive models { the model-data-join is

used for di�erent tasks. There are three scenarios in the case
of a predictive mining model, e.g. a classi�cation model:
testing, prediction and getting the extension. In the �rst
scenario a test set is applied to the mining model via the
model-data-join. In the result a comparison between ap-

plied class name and test class name is possible. During the
prediction a new data set is joined with the model and new
attributes are connected to the tuples. Getting the exten-
sions of the pattern from the training set can be used in the
predictive as well as in the descriptive case. Formally, the
model-data-join is de�ned as follows:

De�nition 14. Let m be a model with the schema M =
fCR; I; L1; : : : ; Lng and r1 be a relation with the schema
R1. Furthermore, it holds R\R1 6= ;. The model-data-join
./md is de�ned as:

r2 = r1 ./md m

= f t : t[R1] 2 r1; 9p 2 m : t[R1] 2 ext(p[CR]);

t[L1; : : : ; Ln] = p[L1; : : : ; Ln]g

The schema of the resulting relation r2 called R2 is de�ned
as R2 = fR1; L1; : : : ; Lng:

4.3 Example
After providing operations over models and between mod-

els and data the proposed framework is described by means
of an example. There are two relations with customer in-
formation and one relation with transaction data, which

stores the information about the bought items of the di�er-
ent customers. At �rst the customers are classi�ed in rela-
tion cust1 and cust2 with the classi�cation algorithms. This
is performed by m1 = �class(cust1) and m2 = �class(cust2),
respectively. Following, we combine the models by using
the union-operator, which executes a meta-learning algo-

rithm and creates the model m3 = m1 [ m2. From the
resulting mining model m3 the analyst selects the "high-
risk" pattern by using the label selection operator, m4 =
�CL=0highrisk0(m3). The mining model m4 represents all
classi�cation patterns that describe the \highrisk" custom-
ers.

The analyst selects all highrisk customers from relation
cust by applying a model-data-join custhr = m4 ./md cust.
A join between the transaction relation trans and custhr
returns the transactions of all highrisk customer transhr.
Over these the analyst executes a frequent set algorithm
to get the typical buying behavior of this customer group.

Figure 2 illustrates the whole process.

5. RELATED WORK
There is a lot of work done in optimizing and scaling data

mining algorithms. Overviews over this work are for in-
stance [15] on classi�cation and [5] on clustering. Associa-

tion rule mining was introduced in [2].

education; address; classg
cust2 = fcid; name; age; sal;cust1 = fcid; name; age; sal;

education; address; classg

education; addressg
cust = fcid; name; age; income;

�class(cust2)

m2 = fCcust2 ; I; CLg

m1 [m2

m4 = fCcust1 ; I; CLg

�CL=0highrisk0(m3)

custhr = fcust1; CLg

cust1 ./md m4

trans ./ custhr

trans = fcid; It1; : : : ; Itlg

transhr

�freqset(transhr)

m5 = fCtranshr ; I1; L1g

m6 = fCtranshr ; I1; L1g

�t�(It1=1^It2=1);I1�0:8(m5)

m1 = fCcust1 ; I; CLg

�class(cust1)

m3 = fCcust1 ; I; CLg

Figure 2: Example process

Very close to the work presented in this paper is the 3W

model and algebra proposed in [11]. In this work a 3 world
model is introduced. The intensional world describes the
mining result. Hereby, hierarchical constraint attributes are
used. The central objects are dimensions, which are sets of
related regions. Over these objects a dimension algebra is
de�ned. Using bridge operators the transitions between the

di�erent object classes are secured. In the framework of this
paper additionally the notion of the interestingness function
is introduced to provide information about quality of the
mining results. Furthermore, the proposed framework relies
on collective and distributed data mining algorithms. Col-

lective data mining is proposed in [13]. The work discusses
algorithms for regression and decision tree induction. [17]
give an overview about techniques and issues of distributed
data mining and shows an approach of a meta-learning sys-
tem.
A second work in this area are the inductive databases pro-

posed in [9, 4]. In these works the KDD process is modeled
as a sequence of queries on inductive databases. An induc-
tive databases consists of a relational database and patterns
over this database. A semantic function w.r.t. the data is
assigned to the patterns. In these works only association
rules and similar rules are considered. Furthermore, no uni-

fying concept for describing patterns is provided.



Several data mining languages or SQL extensions are pro-

posed in literature. Examples are DMQL [8], or MSQL [10].
There exists several standards for data mining. OLE/DB

for Data Mining [16] de�nes data mining models as �rst class
objects and a data mining language which features also a
prediction join. PMML [1] is a XML-language for describ-
ing data mining models. It de�nes the syntax for di�erent

pattern types. Furthermore, SQL/MM Part 6 Data Mining
de�nes a standardized SQL interface for mining algorithms,
that consists of di�erent user-de�ned types and functions.
The model of constraint database systems was introduced

in [12, 19]. [14] gives an overview over many aspects of con-
straint databases. The relational algebra was extended to

use in constraint databases in [7, 19]. An extended con-
straint algebra was introduced in [3]. In this work the au-
thors propose a nested relational interpretation of constraint
relations which is used in the framework of this paper. Fur-
thermore, the authors introduce external functions to con-
straint databases.

The use of constraint databases in the learning and data
mining context was described in [18]. The authors propose
a ILP (Inductive Logic Programming) system which learns
constraints over symbolic and numeric facts by means of
constraint databases.

6. CONCLUSION AND FUTURE WORK
In this paper a vision of a framework for KDD processes

is shown. The model consists of two parts: the model view

and the data view. The data view is de�ned in the rela-
tional model, the model view has to support mining models,
for which operations were de�ned. Mining models contain
all information about the results of data mining techniques
and provide a uniform description of the results. The de-
�ned operators enable powerful querying and manipulation

operations.
Future work addresses the implementation of the frame-

work, �nding of rewrite rules as well as the support of models
with optimized algorithms and index techniques like R-trees
or multidimensional hashing. Based on the model and data
view a process view has to be de�ned which supports iter-

ations and conditions as well as uniform visualization pos-
sibilities. Another research direction is to �nd a uniform
interestingness function.
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