
On Minimal Overhead Operating Systems and
Aspect-Oriented Programming�

Andreas Gal, Wolfgang Schr¨oder-Preikschat, Olaf Spinczyk
University of Magdeburg

Universitätsplatz 2
39106 Magdeburg

fgal,wosch,olafg@ivs.cs.uni-magdeburg.de

Abstract

Deeply embedded systems are forced to operate under extreme resource constraints in terms of mem-
ory, CPU time, and power consumption. The program family concept can be applied in this domain to
implement reusable and highly configurable operating systems. In this paper we present our approach
to use aspect-oriented programming to modify and optimize the inter-object relations and communica-
tion pathways in an object-oriented family of operating system. The aim of this approach is to produce
streamlined application-specific operating systems, minimizing the code size and runtime overhead.

1 Introduction

In the year 2000 8-bitµ-controllers had a market share of 58% of all produced units. Such aµ-controller has
typically only a few thousand bytes of memory and its processing power is very limited. These controllers
are still heavily present in the area of deeply embedded systems because manufacturing costs dominate
the hardware design. To optimally exploit all available hardware resources highly application-specific
operating system software is necessary.

Until a couple of years agomachine-level programmingwas believed to be the only practical approach
to implement operating systems for this domain. With the rapidly evolving and changing development
projects this approach became unfeasible as code-reuse is barely possible on the assembly language level.

This need for code reuse calls for the use of object-oriented methods and languages in embedded
system programming. Instead of implementing dedicated operating systems for every development project
a common source code base, an operating system family, can be used [11].

To fulfill the resource constraints of deeply embedded systems the operating system family is configured
accordingly to the requirements of the specific application. The result of this configuration is a system free
of unneeded and unused functionality. Such a family of operating systems is PURE [12]. PURE is an
object-oriented operating system targeted on deeply embedded systems and implemented in C++.

When PURE was originally designed the functional hierarchy of the family based design was mapped
directly on a class hierarchy using class inheritance. Abstract classes have been avoided as their implemen-
tation in C++ through virtual functions has a negative influence on the code efficiency. The configuration
was performed at compile-time by removing branches with not needed functionality from the class hierar-
chy.

While this is a way to achieve minimal code overhead, it causes serious design problems, for example
the class number explosion. In figure 1 there are three independent functionalities implemented by class
A, B, and C. To represent all possible combinations four derived class are needed. This number increases
dramatically if more functionalities and combinations are available. From the design perspective this can
be solved by using abstract interfaces. While these abstract interfaces can be efficient for family members,

�This work has been partly supported by the German Research Council (DFG), grant no. SCHR 603/1-1 and SCHR 603/2.

1



which use many implementations of that interface, they would cause a significant runtime overhead for
family members having only a single implementation for the interface. The overhead results from the
unnecessary abstract interface, which is implemented using expensive virtual method invocation.

BA C

AB AC

ABC

BC

Figure 1: Class explosion

To resolve this conflict between the runtime efficiency and the reusability of the implementation special
design and implementation techniques are required. While object-oriented programming is a good mean
to deliver highly reusable code, pure object-oriented systems often fail to provide the required minimal
overhead. For this reason we exploit the concept of aspect-oriented programming (AOP) [10] to implement
an application-specific tailoring of our reusable operating system components. Two examples of this will
be presented in the next sections.

Following the principle of separation of concerns the idea of AOP is to separate the component code
from so-called aspect code, which is used in PURE to implement the application-specific adaptation. The
aspect code can consist of several aspect programs, each of which implements a specific aspect in a
problem-oriented language. Afterwards, anaspect weavertakes the component and the aspect code, in-
terprets both, finds join points and weaves everything together to form a single entity. The advantages
of this meta-programming-like approach over conventional techniques for static configuration are that the
problem-adequate language allows a higher level of abstraction and that the number of (visible) configura-
tion points can be reduced significantly.

2 Restructuring the Class Hierarchy

The first example of an aspect-oriented implementation technique is the aspect program driven restructuring
of PURE components. With this technique the flexibility of pattern-based designs [8] and implementations
in the sense of scalability, extensibility, and composability is reconciled with the efficiency needed in the
area of deeply embedded systems. The following paragraphs illustrate using a small example component
the benefits of our approach. A more detailed discussion can be found in [6].

Economist

UserEco

HeapEco

Aligner Profiler Checker

StrategyDecorator

MemBlockMgr

MBMDoubleLink

MBMSingleLink

Strategy

BestFit

WorstFit

FirstFit

Figure 2: A PURE component for memory management

Figure 2 shows a class diagram of a reusable PURE component, which directly reflects the C++ imple-
mentation. The component provides a set of memory management strategies likefirst fit andbest fit. These
strategies can be combined with any sequence of strategy decorator classes to extend their functionality.
For example theChecker may be plugged in to check a freed block of memory, whether it was really
allocated and not already freed. Classes derived fromStrategy do not know the address and size of the
memory they have to manage. This knowledge comes from classes derived fromEconomist . For example
theHeapEco knows the (platform dependent) address of the global heap used bynew anddelete .

2



The design of this component is based on the well-knownstrategyanddecorator patterns[8]. Follow-
ing these patterns the ability to combine classes in a flexible way is achieved by using abstract interface
classes (Economist , Strategy , andMemBlockMgr ). Object connections could be changed even at runtime
and extensions are possible without changing existing classes. No class number explosion takes place.

The problem with this reusable component design is that C++ language features like dynamic binding,
which is used excessively in this example, do not come for free. The memory consumption is increased
by virtual function tables and the additional code needed to check the object type at runtime and find the
relevant function address in the function table. At the same time potential optimizations like function
inlining are not possible with virtual functions.

A better memory consumption and runtime behavior could be achieved with special purpose imple-
mentations, which are customized for a specific application. As an example consider the relation of the
FirstFit strategy to the classes derived fromMemBlockMgr . A MemBlockMgr manages a list of either free
or allocated blocks of memory. This list can be implemented single or double linked (MBMSingleLink vs.
MBMDoubleLink ). Which one an application needs is a trade-off between runtime overhead and code size.
If an application designer decides to use the single linked list it does not make sense to compile the other
version into the system. Further the abstract base class could be omitted. A special purpose implementation
might also move the functionality ofMBMSingleLink directly intoFirstFit . In this case a single object
would provide the whole functionality, no virtual function table would be required, and unneeded classes
would not consume memory.

Compilers are not able to do such optimizations because they do not have access to knowledge about
the requirements of the application, when libraries, frameworks, or - in this case - operating systems are
translated.

require MemoryManagement Application
{

aggregate UserEco; // UserEco is used as it is
reference Economist; // Economist base class is needed
aggregate FirstFit[MBMSingleLink]; // FirstFit should contain an

// MBMSingleLink instance
StrategyDecorator(FirstFit); // the decorator class references

// a first fit object, not any
// strategy

}

Figure 3: Aspect code used to implement the structural aspect of a component

An aspect-oriented implementation solves this problem of efficiency vs. reusability. The class structure
of a component is seen as an aspect, which is implemented by a separate aspect program. As an example
figure 3 shows an aspect code fragment used to describe a specific component structure by listing names
of needed classes and their required relations. The source code of the component and its class diagram
become just templates1, which are used as a starting point for the code transformation that leads to the
final application-specific component instance. This technique combined with a static configuration of the
aspect programs allows to generate a whole family of component instances from single source code, each
optimized for a specific application scenario. This is illustrated in figure 4. While scenario 1 is a subset of
the original component with all abstract classes, scenario 4 is completely free of virtual functions.

As a result of this approach the resources needed by the component now scale with the application
requirements. Table 1 presents the code sizes2 and execution times3 needed by the four different instances
of the memory management component shown in figure 4. In the best case this is a reduction down to 33%
for the code size and 30% for the execution time.

1this has nothing to do with C++ template classes and functions
2measured in bytes with gcc 2.96
31000 subsequent allocations and releases of 10 bytes measured inµs on an AMD Athlon 700MHz system running a Linux with

no load and in clock cycles for a single allocation and release of 10 bytes on an AVR software simulator.

3



scenario 1

scanario 2

scenario 3

scenario 4

aspect code

FirstFit

FirstFit MBMDoubleLink

FirstFit MBMDoubleLink

FirstFit MBMDoubleLink

Profiler

StrategyDecorator

StrategyUserEco

Economist

MBMDoubleLink

MemBlockMgr

Profiler

StrategyDecorator

StrategyUserEco

Economist

Profiler

StrategyDecorator

UserEco

Economist

Profiler

StrategyDecorator

UserEco

aspect weaver

component code

structure
requirement 1

structure
requirement 2

structure
requirement 3

structure
requiement 4

component
description

Figure 4: Restructuring of reusable components

Intel x86 Atmel AVRScenario
text data total % time % text data total % time %

1 1304 224 1528 100 260 100 2208 372 2580 100 862 100
2 984 116 1100 72 191 73 1784 193 1977 76 663 77
3 705 48 753 49 146 56 1362 51 1427 55 484 56
4 508 0 508 33 78 30 966 0 966 37 318 37

Table 1: Code size and execution times of component instances for different application scenarios

3 Inline Optimization

As a second example this section presents and aspect oriented approach to implement a global inline opti-
mization strategy.

To limit the impact of function calls and function epiloges/prologes on the overall code size and exe-
cution time, C++ supports the inlining of bodies of called functions into the callers code flow. Using the
object-oriented design approach results often in large, fine-grained class hierarchies. This also means that
even small applications consist of a large number of methods and inline optimization can have a significant
effect on the overall code size.

The decision whether to inline a method or not is left to the programmer as the compiler does not
have the necessary project-wide knowledge to decide whether a method inlining pays off. Instead, the
programmer has to use the ‘inline’ keyword. Inlining all method invocations does not necessarily produce
the smallest code, as no code can be shared among different callers of the same function. Not choosing
any inlining at all produces even larger code sizes, as for example, no register allocation optimization can
be performed and the code is bloated with many function prologes and epiloges. Due to the large number
of side effects it is very difficult for the programmer to decide which method should be inlined. For a
program family these decisions are even harder due to the manifold configuration options and the resulting
differences in the code-reuse profile.

4



Thus it makes sense to separate this concern from the implementation. We understand the inlining
problem as an aspect which can be dealt with separately. Instead of scattering the inlining control informa-
tion throughout the whole project we use code manipulation controlled by an aspect program to explicitly
implement a global inlining strategy for each family member.

To find a set of inlining decisions producing a small code size for a certain configuration we use a
heuristic inline optimizer based on a genetic algorithm. This would be impossible without the described
separation of concerns. The algorithm starts with a random set of different inlining settings and evaluates
this population by recompiling the whole project according to the settings of each individual in the popu-
lation. The best individuals found are intermixed to increase the probability of finding superior successors.
It is neither guaranteed to find a globally optimal solution, nor will successive computations of the same
problem yield to exactly the same results (figure 5), because the initial population is selected randomly.
Always starting with the same population would annihilate the chance to ever reach better results than
dictated by an arbitrary selected initial population. Our experiments showed that while the results slightly
differ from run to run, in most cases all results stay within an approximately 5 percent window. The set of
inlining decisions determined with this algorithm usually results in much smaller code sizes than inlining
all methods (figure 5).

10000

10500

11000

11500

12000

12500

13000

13500

14000

0 50 100 150 200

co
de

si
ze

 [b
yt

es
]

generations

optimizer run 1
optimizer run 2
optimizer run 3

full inlining

Figure 5: Three different optimization runs of the same project

4 Related Works

Using AOP to optimize software for resource constraint execution domains seems to be quite esoteric in the
software engineering community. Most researchers use AOP in combination with languages with inherent
efficiency problems like Java [1]. Only two papers are known to the authors, which describe applications
of AOP with C++ component code [13] [5]. One reason for this is that tool support for developing aspect
weavers for C++ is missing. For this reason our group has developed the PUMA aspect weaver environment
[2].

Using global project knowledge for program optimization has also been investigated in Dean [4]. In his
thesis he discusses various approaches for improving the generated code from object-oriented languages.
The presented approach for inline optimization tries to evaluate the cost of each inline path by comparing
inlined and not inlined machine code for that path. The final decision what to inline is done by a global
decision-maker within the compiler. Although this approach is much faster at compile-time, the gained
benefits in code size are much lower. It also differs from our approach as it relies on integration into the
compiler.

The virtual function call elimination process for C++ by Aigner and H¨olzle [3] also deploys whole
program optimization techniques but uses instrumented source code and a test run of the executable to
gather input data for the optimization process. While this paper concentrates on runtime efficiency, it does
not include the degree of program structure simplification as our presented approach.

5



5 Conclusions

The previous sections presented two examples how aspect-oriented implementation techniques can be used
to reduce the overhead of object-oriented operating systems like PURE significantly if knowledge about
the application(s) is given. This makes AOP an ideal approach for the development of operating system
families for the area of deeply embedded systems but also for application development frameworks. Com-
parisons of the PURE port to the Atmel AVR 8-bit RISCµ-controller with other operating systems used on
this platform show that the highly configurable object-oriented PURE requires in many cases less resources
than even systems hand-coded in assembly language [7].

Parallel research activities of our group deal with adequate methods to handle the enourmous number
of systems configuration available with the presented implementation techniques like feature modelling [9]
and application code analysis.

References

[1] The AspectJ Homepage, 2001.http://www.aspectj.org/ .

[2] The PUMA Project, 2001.http://ivs.cs.uni-magdeburg.de/˜puma/ .

[3] G. Aigner and U. H¨olzle. Eliminating Virtual Function Calls in C++ Programs. Technical Report
TRCS 95-22, University of California, 1995.

[4] J. Dean. Whole-Program Optimization of Object-Oriented Languages. Technical Report TR-96-11-
05, University of Washington, 1996.

[5] L. Dominick. Aspect of Life-Cycle Control in a C++ Framework. InProceedings of the Aspect-
Oriented Programming Workshop at ECOOP’99, Lisbon, Portugal, June 1999.

[6] M. Friedrich, H. Papajewski, W. Schr¨oder-Preikschat, O. Spinczyk, and U. Spinczyk. Efficient
Object-Oriented Software with Design Patterns. InKrzysztof Czarnecki, Ulrich W. Eisenecker (Eds.):
Generative and Component-Based Software-Engineering. First International Symposium, GCSE’99,
Erfurt, Germany, Sept. 1999. Springer-Verlag. Revised Papers. LNCS 1799.

[7] A. Gal. Reconciliation of an Object-Oriented Runtime Environment and Resource Restricted Sys-
tems. Master’s thesis, University of Magdeburg, 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995. ISBN 0-201-63361-2.

[9] K. Kang, S. Cohen, J. Hess, W. Peterson, and S. Peterson. Feature-Oriented Domain Analysis (foda)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Aksit and S. Matsuoka, editors,Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP ’97), volume 1241 ofLecture Notes in Com-
puter Science, pages 220–242. Springer-Verlag, June 1997.

[11] D. L. Parnas. On the Design and Development of Program Families.IEEE Transactions on Software
Engineering, SE-5(2):1–9, 1976.

[12] F. Schön, W. Schr¨oder-Preikschat, O. Spinczyk, and U. Spinczyk. Design Rationale of the PURE

Object-Oriented Embedded Operating System. In F. J. Rammig, editor,Proceedings of the Interna-
tional IFIP WG 9.3/WG 10.5 Workshop on Distributed and Parallel Embedded Systems (DIPES ’98),
Paderborn, 1998. Kluwer Academic Press. ISBN 0-7923-8614-0.

[13] E. D. Willink and V. B. Muchnick. Weaving a Way Past the C++ One Definition Rule. InProceedings
of the Aspect-Oriented Programming Workshop at ECOOP’99, Lisbon, Portugal, June 1999.

6


