
EÆcient Object-Oriented Software

with Design Patterns?

Mario Friedrich2, Holger Papajewski1, Wolfgang Schr�oder-Preikschat1,

Olaf Spinczyk1, and Ute Spinczyk1

1 University of Magdeburg, Universit�atsplatz 2, 39106 Magdeburg, Germany,

fpapajews,wosch,olaf,uteg@ivs.cs.uni-magdeburg.de
2 GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany,

friedric@first.gmd.de

Abstract. Reusable software based on design patterns typically uti-

lizes \expensive" language features like object composition and poly-

morphism. This limits their applicability to areas where eÆciency in the

sense of code size and runtime is of minor interest. To overcome this prob-

lem our paper presents a generative approach to \streamline" pattern-

based object-oriented software. Depending on the actual requirements of

the environment the source code is optimized with a transformation tool.

The presented technique provides \scalable" software structures and thus

reconciles reusability with eÆciency of pattern-based software.

1 Introduction

Design Patterns [6] are \descriptions of communicating objects and classes that

are customized to solve a general design problem in a particular context". They

are widely accepted as a very useful approach to ease the design of object-

oriented software. Though no speci�c programming language nor coding style is

forced by design patterns, a pattern description typically contains a class dia-

gram, e.g. based on OMT or UML, and sample code. The code directly re
ects

the class diagram in order to achieve the same reusability. It excessively utilizes

\expensive" language features like object composition via pointers and polymor-

phism. This raises the question of the eÆciency of design pattern-based software

and object-oriented software in general.

In some application domains even a comparably fast object-oriented language

like C++ is not fully accepted because of its expensive features like dynamic

binding. An example for such domains is the embedded systems area were now

the \Embedded C++"1 standard should increase the acceptance. The same holds

for the core of numerical application and (non-research) operating systems.

From our experience in the operating systems area we can state that it is

hard to design and implement reusable - and at the same time eÆcient, overhead

? This work has been supported by the Deutsche Forschungsgemeinschaft (DFG),

grant no. SCHR 603/1-1.
1 Embedded C++ is a subset of C++ omitting the above mentioned expensive fea-

tures.

2

free - object-oriented software, but it is even harder with design patterns. A

pattern helps to design the class diagram of a software module. But, what is

the relationship to the program code that has to be implemented? Normally the

relationship is a direct mapping. Modern visual design tools generate the source

code or the code is entered in the traditional way by adapting the pattern's

sample code manually. This leads to
exible reusable code: Implementations and

interfaces are separated by using abstract base classes and object composition

is often applied to build
exible structures of objects that can be changed even

at runtime. On the other hand this reusability and
exibility poses a signi�cant

overhead: abstract base classes, e.g., lead to dynamically bound (virtual) function

calls. In [5] a median execution time of 5.6% and a maximum of 29% of dynamic

dispatch code for a set of sample applications which quite sparingly execute

virtual function calls is documented. Object composition implies pointers in

every object of a speci�c class, thus wasting memory in the case that a dynamic

modi�cation of object connections is not needed. Last but not least the software

module is often more complicated to use than a non-reusable variant which is

especially trimmed to the needs of a speci�c application.

Our approach to overcome this problem follows the program family concept

[8]. Di�erent versions of a software module are generated to ful�ll the require-

ments of its various application environments. Domain speci�c information is

used to simplify the module structure as far as possible. This is done by a source-

to-source transformation tool which works like an aspect weaver (see AOP [7])

with con�guration information as aspect program and the module as component

code. The generated code can be fed into any standard compiler which can then

generate the optimized executable.

In the remaining sections of this paper we discuss the eÆciency and opti-

mization of pattern-based software in the context of application domains with

hard resource constraints in more detail. This is followed by a presentation of

our results and a discussion of related work.

2 Problem Discussion

Pattern-based software should be reusable and extensible without touching ex-

isting source code. A good example of how these design goals can be achieved

shows the Strategy Pattern. The structure of this pattern is presented in �gure

1 as a UML class diagram.

Strategy

StrategyA StrategyB

Client

Fig. 1. The strategy pattern

3

The idea behind this pattern is to separate the interface and the imple-

mentation of some strategy. By doing this other strategies implementing the

same interface can be easily integrated into the system without touching ex-

isting source code. It is even possible to change the strategy that is associated

with each client object at runtime. The strategy pattern can be found as some

kind of sub-pattern in many other design patterns. This makes it a very typical

example to illustrate the overhead that may be posed on a software system if

the implementation directly re
ects the presented class diagram.

Now consider a concrete pattern instantiation: The client objects are memory

managers in an operating system that know the start address and size of a

memory block. They allow other objects to allocate and free pieces of memory

from the pool they manage. The actual allocation can be done with di�erent

strategies like \best �t" or \�rst �t". The implementation of this little memory

management subsystem should be reused in di�erent operating system projects

and may be extended by other strategies like \worst �t" in the future. Therefore

the most
exible (pattern-based) implementation with a pointer to an abstract

strategy base class is selected (�gure 2).

Strategy

BestFit FirstFit

MemoryManager

Fig. 2. The instantiated pattern { a memory management subsystem

But this extensible and reusable implementation causes an overhead in op-

erating system projects where the
exibility is not needed. As a �rst problem

scenario consider a system with MemoryManager objects that never need the

\�rst �t" strategy. Why should they access their associated strategy object via

the abstract base class? Assuming C++ as our implementation language they

could simply contain a pointer to a BestFit object as shown in �gure 3. A

special purpose design like this would omit the virtual function call needed to

dynamically switch between the di�erent strategy method implementations at

runtime.

BestFitMemoryManager

Fig. 3. Scenario 1 { single strategy class

To have an impression of the overhead that results from the abstract base

class we have implemented a simple test application that creates two BestFit

objects and a MemoryManager object. In this test scenario the method bodies

4

were left empty. Only an output statement was include to track the correct

behaviour. After associating the �rst BestFit object to the MemoryManager

one of the methods of the strategy is called. Then the second BestFit object

is associated to the MemoryManager and the method is called once again. The

test application has been compiled in two versions: The �rst using the original

strategy pattern (�gure 2 without the FirstFit class) and the second using

the simpli�ed structure from �gure 3. Table 1 shows the resulting static memory

consumption2. To exclude the constant size of the startup code and the C library

output function which are magnitudes bigger than our simple test modules we

present only the object �le sizes here.

Table 1. Scenario 1 { memory consumption

Version 1: Original Pattern Version 2: Simpli�ed Structure

text data bss sum �lename text data bss sum �lename

113 12 0 125 BestFit.o 36 0 0 36 BestFit.o

34 0 0 34 Manager.o 25 0 0 25 Manager.o

146 4 20 170 main.o 164 4 12 180 main.o

293 16 20 329 all 225 4 12 241 all

The sum over all sections in all linked object �les in version 1 is 329 in compar-

ison to 241 bytes in version 2. In other words, the pattern-based implementation

requires about 36.5% more memory space than the specialized implementation.

Now consider a second scenario where the MemoryManager does not need

to switch between di�erent strategy objects at runtime because only a single

global BestFit strategy object exists. In this case a specialized implementation

can omit the abstract Strategy class, too. The global \best �t" strategy can be

implemented by a class BestFit with all methods and data members declared as

static. Now all strategy methods can be called without an object pointer and the

MemoryManager objects can get rid of them. This is a signi�cant reduction if one

considers ten or hundreds of MemoryManager objects. But even with only a single

object the memory consumption of the simpli�ed implementation is signi�cantly

lower than the consumption of the pattern-based version. The exact numbers are

presented in table 2. Here the overhead of the pattern-based implementation in

this scenario is 160%.

Design patterns make the trade-o�s of the di�erent design options explicit,

thus a designer can select whether to accept the overhead of the pattern-based

implementation or to implement a specialized version of the subsystem. But in

both cases the designer will lose. In the �rst case the price is mainly eÆciency

and in the second it is the reusability of the subsystem together with the risk to

introduce errors.

2 The code was generated with egcs 2.90.27 on Linux/Intel. To omit unnecessary run-

time type information code the compiler options -fno-rtti and -fno-exceptions

were used.

5

Table 2. Scenario 2 { memory consumption

Version 1: Original Pattern Version 2: Simpli�ed Structure

text data bss sum �lename text data bss sum �lename

113 12 0 125 BestFit.o 38 4 0 42 BestFit.o

34 0 0 34 Manager.o 29 0 0 29 Manager.o

121 4 16 141 main.o 42 0 2 44 main.o

267 16 16 299 all 109 4 2 115 all

3 Optimization

The overhead documented in section 2 cannot be tolerated in many application

areas and should be avoided. Instead the complexity of the system structure

should scale with the actual requirements of the subsystem's environment. It

should not be ruled by possible future system extensions which may never hap-

pen. At the same time the implementation should be reusable.

To achieve this goal we combine the pattern-based software design with

knowledge about the actual system requirements in a con�guration phase. This

input is used by an optimizer that selects a specialized system structure which

is free of the pattern overhead (optimization phase). For the software developer

this process is transparent. The source code directly re
ects the pattern-based

design, thus is as reusable and extensible as the design itself. The necessary spe-

cialization is done by a source code transformation tool in the generation phase.

The complete process is illustrated in �gure 4.

code transformation

optimized system
structure

"streamlined"
implementation

optimization

pattern-based
implementation

"traditional"
design and
implementation
phase

configuration
phase

optimization
phase

generation
phase

configuration
data

BOB

pattern-based
system design

Fig. 4. The complete optimization process

6

The result of this approach is a tool that allows to generate a family of �ne-

tuned subsystem implementations from a single reusable pattern-based source

code. The con�guration step selects the best suited family member.

Section 4 discusses the software architecture of the \black optimizer box"

(BOB) and the code transformation with further details. The remaining parts of

the current section focus on the optimization phase and the rules and conditions

guiding the optimization process.

3.1 Pattern Descriptions

An important prerequisite for the optimization of the pattern-based implemen-

tation is the documentation of the applied pattern. The documentation is needed

to avoid a complex source analysis and the software developer should document

instantiated patterns anyway. The pattern description consists of the pattern

name, a name of the created pattern instance and list of classes building the

pattern with their associated roles as shown in �gure 5.

define CommunicationSystem decorator

f
component: Driver;

concrete component: Ethernet;

decorator: Protocol;

concrete decorator: IP;

concrete decorator: Crypt;

g

Fig. 5. A pattern description

Pattern instances usually can be extended without touching existing source

code. With the extend-command (see �gure 6) this is possible with the pattern

description as well .

extend CommunicationSystem

f
concrete component: CAN;

g

Fig. 6. A pattern description extension

Having this description (pattern de�nition and extensions) the optimizer

\knows" the names of the classes forming a pattern and implicitly how the

connections between these classes are implemented, i.e. the class diagram (�gure

8, left side). In �gure 4 this corresponds to the \pattern-based system design"

box.

7

The example subsystem shown above is a simpli�ed communication system. It

contains an ethernet and CAN bus driver. Other hardware drivers can be added

easily because of the abstract Driver base class. With the decorator pattern it is

possible to connect a protocol like IP with any hardware driver or even to create

chains of protocols, e.g. to create an IP communication driver with encryption.

3.2 Requirement De�nitions

The pattern instance (CommunicationSystem in the example) is reusable in di�er-

ent environments. To �nd an optimized system structure for the pattern-based

subsystem it is necessary to specify the requirements of its environment. The

requirement de�nition that is used for this purpose corresponds to the \con�g-

uration data" in �gure 4. It is provided in the con�guration phase, thus can be

exchanged for di�erent application environments.

The requirement de�nition mainly consists of the list of class names that are

used from the pattern-based subsystem and a description in what way objects

are instantiated. An example is given in �gure 7.

require CommunicationSystem

f
IP [Protocol (Ethernet)];

g

Fig. 7. A pattern requirement de�nition

This requirement says that only the IP, Protocol and Ethernet classes

are needed (directly) by the environment of the pattern-based subsystem. The

Protocol class should contain a pointer to an Ethernet object, instead of a

pointer to any kind of Driver.

Before the system structure can be modi�ed the requirement de�nition

is checked against the class hierarchy given by the pattern description: All

classes mentioned have to be known and a relation to another class (like

\Protocol (Ethernet)") is restricted to the subtree below the class refer-

enced in the original class hierarchy. Inheritance relationships cannot be changed

but one can change an object composition built with a pointer to an aggre-

gation (like \Protocol [Ethernet]"). It is also possible to create specialized

class versions with the alias feature, e.g. \EP is Protocol [Ethernet]; CP is

Protocol [CAN];".

3.3 Optimization Rules

With the description of the implemented system structure and the requirements

in the actual application scenario a \streamlined" system structure can be au-

tomatically derived. The following simple rules are applied:

8

{ All classes, that are not mentioned in the requirement de�nition and that

are not base classes of them, can be removed.

{ The class relation changes given in the requirement de�nition are applied.

{ Classes, that are not referenced from classes outside their own inheritance

subtree are \devirtualized", i.e. all pure virtual functions are removed and

virtual functions are declared non-virtual.

{ Empty classes are removed.

Figure 8 shows two examples of requirement de�nitions and the resulting system

structures.

CAN CryptProt IPProt

Crypt IP Ethernet

require CommunicationSystem
 { CAN; }

require CommunicationSystem
 { IPProt is Protocol [Ethernet];
 IP [IPProt];
 CryptProt is Protocol [IP];
 Crypt [CryptProt];
 }

Scenario 1: Just a CAN Driver Scenario 2: Crypted Data via IP on Ethernet

Driver

Ethernet ProtocolCAN

IP Crypt

Pattern-based System Structure

Fig. 8. Optimized system structures

3.4 Multiple Requirement De�nitions

Currently only a single requirement de�nition that describes the demands of

the environment of the pattern instance is allowed. With this restriction the

environment is forced to have a common view on the classes in the pattern. A

future extension of our transformation system shall handle this problem.

As an example consider a subsystem that requires just a single CAN driver

like scenario 1 of �gure 8 and a second subsystem requiring an IP communication

via ethernet with data encryption. Both requirements do not con
ict and can

be merged easily.

9

Even if one subsystem speci�es \IP [Protocol [Ethernet]]" and in-

stantiates its driver objects with \IP ip;" and another subsystem speci�es

\IP [Protocol (Ethernet)]" a common requirement can be found automat-

ically: The second subsystem instantiates IP objects with individual ethernet

driver objects like \Ethernet eth; IP ip (ð);". An algorithm has to �nd

the \cheapest" system structure that ful�lls both requirements. In the example

it is the requirement de�nition of the second subsystem. To have optimization

transparency, the source code of the �rst subsystem has to be adapted by cre-

ating an Ethernet object any time the source code exhibits a creation of an IP

object.

4 Implementation

Figure 4 shows two actions inside of BOB: The \optimization" and the \code

transformation". These two steps directly re
ect the two-level system architec-

ture that implements the optimization process.

The upper level is responsible for the optimization. It reads and analyses the

pattern descriptions and requirement de�nitions given in the PATCON language,

that was introduced by the examples in �gure 5, 6 and 7. With the optimization

rules described in subsection 3.3 a list of transformation commands is generated.

The transformation commands are the input for the lower level that does the

code transformation. The lower level is implemented by an aspect weaver that

handles the customization of object interactions in general. The actual transfor-

mation work is done by \Puma for C++", a parser and manipulator library for

C++ code, which is going to be extended to an aspect weaver environment with

a plug-in interface for multiple aspect weavers in the near future.

5 Results

A prototype implementing the algorithms and transformations described in the

previous sections is running. To demonstrate the results, we have implemented

a communication system like that from �gure 8. The di�erence to that system is

that we only have a single \hardware" driver which implements a simple mailbox

for local inter-thread communication. Our two protocols are a checksum calcu-

lation and encryption. With this \renaming" scenario 1 is just a single mailbox

and scenario 2 is checksum protocol on encrypted messages. The resulting code

sizes and runtimes are presented in table 3. For the measurements again the

egcs-2.90.27 on a Linux/Intel system was used. The sizes are given in units of

bytes and the runtimes in Pentium II clock cycles.

The code sizes contain the complete test application consisting of two threads

that communicate with each other via a shared mailbox. It also consists of class-

es that implement abstractions of communication addresses and data packets,

the mailbox code and a lot of inlined operating system functions for thread syn-

chronization and scheduling. All of these parts are equal in the pattern-based

and the optimized version. So results like those of table 1 and 2 could not be

10

Table 3. Code sizes and runtimes

Scenario 1 Scenario 2

Pattern Optimized Pattern Optimized

code 1532 1477 3676 3550

data 36 20 148 100

bss 20 16 208 188

sum 1588 1513 4032 3838

; receive time (sync.) 675 424 1694 1548

; receive time (async.) 314 307 675 518

expected. Nevertheless there is a di�erence of 75 bytes in scenario 1 and 194

bytes in scenario 2. This is a reduction of about 4.8% in both cases.

The runtime data shows the number of clock cycles needed for synchronous

and asynchronous receive operations. In scenario 1 in both versions no virtual

function call takes place and no unnecessary constructor code is executed in the

pattern-based version. So we can explain the big di�erence (675-424) only with

a better cache hit rate because of the slightly reduced memory consumption.

In scenario 2 there is a speedup of 8.6% in the synchronous case where context

switch times are included and 23.3% in the asynchronous case.

6 Related Work

The generation of pattern implementations is proposed in [3]. This work of IBM

has much in common with our work since di�erent implementations can be

generated depending on so called \trade-o�s". These trade-o�s correspond to

the optimization conditions in section 3. The di�erence is that this work mainly

focuses on the increased productivity with automatic code generation tools and

not the eÆciency and optimization aspects.

The specialization of source code in our approach is a kind of static con�g-

uration. This can also be done with template metaprogramming as proposed in

[4]. While that paper presents a general purpose implementation technique for

static con�guration we concentrate on design patterns. The specialized source

code could also be generated with template metaprogramming, but the optimiza-

tion would have to be a manual process. Our approach simpli�es the software

development because no template programming is necessary and only the used

patterns need to be documented. The con�guration information can be supplied

in a problem-adequate language.

Virtual function call optimization by source-to-source transformation of C++

code was successfully applied in [1]. Their optimizer implements a class hierarchy

analysis and a pro�le-based type feedback optimization. Similar ideas are pre-

sented in [2]. Both papers concentrate on runtime. A simpli�cation of the whole

program structure or the elimination of member variables that lead to reduced

memory consumption was not documented. This would require extra knowledge

about the implementation like the pattern descriptions.

11

7 Conclusions

We have not completed our work on this topic yet. A lot of implementation and

especially documentation work still has to be done, and our experiences with the

system in future projects will probably have an in
uence on the optimization

rules and conditions, too.

Nevertheless the tools and techniques presented in this paper show how

reusability and extensibility of a pattern-based software design can be recon-

ciled with the eÆciency of the resulting implementation by automatically scaling

software structures. The software designer simply needs to de�ne requirements

and make the applied patterns explicit inside a pattern description �le. The rest

of the optimization is completely transparent. Thus we are optimistic that our

approach may raise the level of acceptance of pattern-based object-oriented soft-

ware in application areas with hard resource constraints. For our development

of Pure [9] - a family of object-oriented operating systems that targets the

area of deeply embedded systems - patterns can now be applied without risking

unacceptable overhead.

References

[1] G. Aigner and U. H�olzle. Eliminating Virtual Function Calls in C++ Programs.

Technical Report TRCS95-22, Computer Science Department, University of Cali-

fornia, Santa Barbara, December 1995.

[2] D. Bernstein, Y. Fedorov, S. Porat, J. Rodrigue, and E. Yahav. Compiler Opti-

mization of C++ Virtual Function Calls. In 2nd Conference on Object-Oriented

Technologies and Systems, Toronto, Canada, June 1996.

[3] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code

generation from design patterns. IBM Systems Journal, 35(2), 1996.

[4] K. Czarnecki and U. Eisenecker. Synthesizing Objects. In R. Guerraoui, edi-

tor, Proceedings of the 13th European Conference on Object-Oriented Programming

(ECOOP'99), number 1628 in Lecture Notes in Computer Science, pages 18{42,

Lisbon, Portugal, 1999. Springer Verlag.

[5] K. Driesen and U. H�olzle. The Direct Cost of Virtual Function Calls in C++. In

OOPSLA'96 Proceedings, October 1996.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995. ISBN 0-201-63361-2.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. Aspect-Oriented Programming. Technical Report SPL97-008 P9710042,

Xerox PARC, February 1997.

[8] D. L. Parnas. On the Design and Development of Program Families. IEEE Trans-

actions on Software Engineering, SE-5(2):1{9, 1976.

[9] F. Sch�on, W. Schr�oder-Preikschat, O. Spinczyk, and U. Spinczyk. Design Rationale

of the Pure Object-Oriented Embedded Operating System. In Proceedings of

the International IFIP WG 9.3/WG 10.5 Workshop on Distributed and Parallel

Embedded Systems (DIPES '98), Paderborn, 1998.

