
On Architecture Transparency in Operating Systems
�

Danilo Beuche, Antônio Augusto Fr�ohlichy, Reinhard Meyer, Holger Papajewski,

Friedrich Sch�ony
, Wolfgang Schr�oder-Preikschat, Olaf Spinczyk, Ute Spinczyk

University of Magdeburg
y
GMD FIRST

Universit�atsplatz 2 Kekul�estra�e 7

D-39106 Magdeburg, Germany D-12489 Berlin, Germany

wosch@fcs.uni-magdeburg,first.gmdg.de

1 Architectures Revisited

Operating-system development for deeply embedded
parallel/distributed systems sometimes may become
a fairly challenging undertaking. Here, the phrase
\deeply embedded" refers to systems forced to op-
erate under extreme resource constraints in terms of
memory, CPU, and power consumption. The notion
\parallel/distributed" relates to the fact that embed-
ded systems are becoming more and more complex.
Typical cases where appliances are to be controlled
by systems like this come from the automotive �eld.
From the perspective of a computer-science engineer,
today's cars are distributed systems on wheels. Their
operation is made feasible by a fairly large number
of networked electronic control units (ECU), or �-
controllers, with each ECU being equipped with a
thimble full of memory only. Depending on the re-
quested furnishings, cars with 70 ECUs and 4KB of
memory per ECU are no rarity any longer. Aircrafts
are much more complexer distributed systems: a Bo-
ing 747 is own by about 1400 processors. The mar-
ket of such systems is huge1 and is subject to an

�This work has been partly supported by the Deutsche
Forschungsgemeinschaft (DFG), grant no. SCHR 603/1-2 and
the Bundesministerium f�ur Bildung und Forschung (BMBF),
grant no. 01 IS 903D 2.

1[8] reports that in year 2000 about 8 billions microproces-
sors will be manufactured. About 2% of which will go into the
PC market, while 90% are dedicated to embedded systems.
About 5 billions of all will be 8-bit microprocessors.

enormous cost pressure. Although the cost of some
networked ECUs are in many cases far below that of
a single \standard PC", their operating-system de-
mands are often much more challenging.

When looking into some more detail at the func-
tions a deeply embed-able operating system has to
provide, one will identify many commonalities with
contemporary, e.g. Unix-like, operating systems. In
many cases some sort of process model needs to be
supported, interrupt handling and device-driver ser-
vices are required, synchronization becomes a de-
manding issue, memory and resource management
needs to be provided, and network communication
can not be sacri�ced [13]. However, the given re-
source limits prevent the use even of compact micro-
kernels such as QNX [15] and L4 [10].

One often hears arguments saying that systems like
these have been developed for other (namely more
general) purposes, thus bringing them into discus-
sion here would mean comparing apples with oranges.
There is a word of truth in it, but the salient point
regards the (internal) design decisions of these sys-
tems that limit to some extent the applicability to a
broader raange. Some decisions have been met too
early during the system design phase. A typical ex-
ample is an assumption that a context switch always
means exchanging the contents of CPU registers and
the address-space mapping, because a process always
has to execute within its own address space. In this
case, a speci�c architecture or outward manifestation

1



of the operating system draws throughout many com-
ponents. This limits component reusability and/or
lets streamlining become somewhat di�cult if not im-
possible.

Which operating-system architecture is the best,
e.g. monolithic or based on a micro-kernel, promptly
becomes a question of philosophy. To express that
micro-kernels could be even more compact than they
appear, nano-kernels have been introduced. The lim-
itations of nano-kernels, in turn, motivated the in-
vention of pico-kernels.2 The dispute on this is not
new|and questionable, since all the architectures are
compatible to each other [9]. The choice of architec-
ture should better be a question of the actually to be
created system con�guration and depends on the ap-
plication �eld of the resulting operating system. That
is to say, architecture should be considered a non-

functional property of an operating system. There
are many di�erent aspects under which the system
components may have to operate. To make them
reusable for various application scenarios, design and
implementation of each of the components should be
architecture transparent.

2 Operating Systems and As-

pect Orientation

In order to develop (operating-system) software for a
broad application spectrum, design decision that re-
strict applicability must be postponed as far as pos-
sible. Perhaps certain decisions will never be made
inside the system, but rather considered a case for
the application programs to be supported. When
carefully translated into action, this classical bottom-
up design approach leads to a program family [14].
Strictly speaking, design decisions are met bottom-
up, but the design process is controlled in a top-down
manner. The idea is to design family members that
are particularly tailored to support speci�c applica-
tion scenarios by sharing as many as possible system
abstractions, i.e. reusable components. A highly dis-

2Since even pico-kernels can not be the end of the agpole,
should one therefore better try with femto-kernels? And what
comes next?

tinct functional hierarchy of \�ne-grain sized" com-
ponents is the outcome. The entire system structure
is a logical one in the sense that the design is hi-
erarchical, and not its implementation [6]. Combin-
ing this approach with an object-oriented implemen-
tation may result in highly exible and yet e�cient
system structures [3].

Design decisions related to any sort of system archi-
tecture should be postponed in the above mentioned
sense, and ideally never be made. As an example,
Figure 1 illustrates the vision of an operating sys-
tem that follows these design ideas. The goal of the
Pure system [16] is to give applications exactly the
resources they need to perform their tasks, no more
and no less. In this sense Pure aims at being a \per-
fect universal runtime executive" for any application.
This includes runtime as well as operating systems.

The �gure shows the functional hierarchy of a
Pure operating system on an intentional abstract
level. The building blocks depicted in the vertical
refer to various aspects, applications as well as sys-
tem extensions may be subjected to. These aspects 3

describe di�erent architecture manifestations. Each
of these building blocks stands for a more or less
complex sub-system, the designs of which are strictly
family-based. Their association with a certain level in
the overall hierarchy manifests a speci�c operating-
system architecture. For example, pushing threads
and address spaces in between scheduling and mem-
ory, and layering the others above persistency, results
into a micro-kernel-like system organization. The ba-
sic idea behind Pure operating systems now is to let
this association become a con�guration matter.

Supporting architecture transparency is a key is-
sue in the design of all Pure building blocks. The
creation of a speci�c architecture then is achieved us-
ing aspect-oriented programming (AOP) [7]. Aspect
programs take care of the manifestation of a partic-
ular architecture by describing code transformations
that need to be applied to selected components. The
transformation process then is performed by an as-
pect weaver. This way e.g. stubs are generated that
hide the style of system-service invocation (e.g. local,
remote, crossing address-space boundaries, perform-

3For an understanding of dual objects, refer to [12].

2



scheduling

dispatching

interruption

drivers

protocols

persistency

memory

platform

exten
sion

s
ba

sis
n

u
cl

eu
s

application

th
re

ad
s

ad
d

re
ss

 s
p

ac
es

p
ro

ce
ss

es

R
P

C

d
u

al
 o

b
je

ct
s

a
sp

ec
ts

Figure 1: The Pure model of operating systems

ing mode changes, etc.) from the system components:
the stubs encapsulate non-functional properties of the
respective system components. Furthermore, syn-
chronization primitives are inserted automatically to
make e.g. thread-unaware components thread safe.
Component instrumentation, e.g. for monitoring pur-
poses, is made feasible as well [11]. Last but not least,
to give pattern-based object-oriented designs a �nal
polishing, AOP appears to be a promising technique
for streamlining system code [1].

To catch on to the discussion made in the previous
section and exemplify the Pure idea a little more,
consider e.g. a device-driver component. A device
driver in a micro-kernel architecture will typically be
implemented as a user-level server process while in a
monolithic system the same driver is provided by a
set of kernel-level functions. It is not the functionality
that di�ers, but the interaction between the driver
and its clients. Using the AOP approach, the driver
may be described as a component, or set of C++
classes, that concentrates on its functional properties.

In contrast, the interaction is considered to be an
aspect that de�nes a non-functional property of the
driver component. It is then up to the aspect weaver
to transform a simple method invocation either to a
remote procedure call or to a system-call trap.

3 A Pure Case Study

Some of the ideas discussed in the previous section
are still future aims. Currently, the Pure devel-
opment is supported by an aspect-weaver suite to
streamline object-oriented C++ programs depend-
ing on their actual use pattern [1] and to monitor
the run-time behavior of system components [11].
Work on a generic component inter-action system is
in progress. The Pure abstractions provided so far
allow the composition of deeply embed-able operating
systems. The following presentation gives an impres-
sion up to which extent the design method followed
by Pure is suitable for the development of exible
and yet resource sparing system abstractions.

3



Size (in bytes)
Family Member i686, egcs-1.0.2 c167, gcc-2.7.2.1

text data bss total text data bss total

interruptedly 812 64 392 1268 860 122 2 984

reconcile 1882 8 416 2306 1792 232 2 2026

exclusive 434 0 0 434 376 96 10 482

cooperative 1588 0 28 1616 1762 218 6 1986

non-preemptive 1643 0 28 1671 1820 218 6 2044

preemptive 3786 8 412 4206 4856 552 6 5414

Table 1: Nucleus memory consumption

The Pure basis (see also Figure 1) is generic, it ap-
pears in di�erent con�gurations. Each of these con-
�gurations represents a member of the nucleus family
and implement a speci�c operating mode. As a con-
sequence, Pure can be customized, for example, with
respect to the following scenarios:

1. One way of operating the CPU is to let Pure
run interruptedly. This family member merely
supports low-level trap/interrupt handling. The
nucleus is free of any thread abstraction. It only
provides means for attaching/detaching excep-
tion handlers to/from CPU exception vectors.

2. In order to reconcile the asynchronously ini-
tiated actions of an interrupt service routine
with the synchronous execution of the inter-
rupted program, a minimal extension to 1. was
made. The originating family member ensures
a synchronous operation of event handlers in an
interrupt-transparent manner [17].

3. The second basic mode of operating the CPU
means exclusive execution of a single active ob-
ject. In this situation, the nucleus provides
only means for objecti�cation of a single thread.
The entire system is under application control,
whereby the application is assumed to appear as
a specialized active object. There is only a single
active object run by the system.

4. A minimal extension to 3. leads to cooperative

thread scheduling. No other design decisions are
made except that threads are implemented as

active objects and scheduled entirely on behalf
of the application. There may be many active
objects run by the system.

5. Adding support for the serialized execution of
thread scheduling functions enables the non-

preemptive processing of active objects in an
interrupt-driven context. Thread scheduling
still happens cooperatively, however the nucleus
is prepared to schedule threads on behalf of
application-level interrupt handlers. Actions of
global signi�cance, and enabled by interrupt
handlers, are assumed to be synchronized prop-
erly.

6. Multiplexing the CPU between threads in an
interrupt-driven manner establishes the au-
tonomous, preemptive execution of active ob-
jects. This functional enrichment of the nucleus
takes care of timed thread scheduling.

On this basis, a \mechanic" becomes able to compose
a tailor-made system according to the functionality
required by a given application. Di�erent functional-
ities also implies di�erent system parameters in terms
of, for example, the memory consumption (Table 1)
of the resulting con�guration. In the realm of deeply
embedded systems, memory consumption plays a de-
cisive role.
Another system parameter which is of importance

especially for applications that have to operate under
real-time constraints concerns scheduling overhead.
The family members that support scenarios 1.{3. ex-
hibit no scheduling overhead at all: they simply do

4



not include any scheduler. For the remaining vari-
ants, the overhead e.g. on a i686, including context
switching, is 49 cycles (4.), 57 cycles (5.), and 300
cycles (6.). By distinguishing system parameters like
this in relation to a speci�c system con�guration, one
gets a picture on which functionality can be o�ered to
applications and yet ful�ll a required real-time guar-
antee.

These numbers show that a fairly complex object-
oriented system implementation 4 must not necessar-
ily result into an overhead-prone system representa-
tion. Nevertheless, all is not gold that glitters: the
big problem behind the Pure design is the exploding
high con�guration variety. This problem is going to
be tackled using feature modeling and specifying Pro-
log rules by means of which the Pure components
are automatically selected from the family or gener-
ated out of generic source modules [1]. The rule set
ensures that only those components that are really
intended to be used by a given application are con-
sidered in the con�guration process. Conicting and
ambiguous con�gurations are recognized and handled
appropriately.

A further idea is to let the con�guration process
happen in two main phases. The �rst phase identi�es
scenario adapters [5] by means of which knowledge
about the actually used interfaces are collected. This
phase is responsible for the coarse-grain assembly of
needed system abstractions. The feature information
delivered speci�es which interface is being used. More
dynamic aspects on how the selected interfaces are
used mostly remain open. This problem is going to
be solved by the second phase which �nally composes
an interface implementation that meets the requested
requirements.

4 Conclusion and Future Work

A Pure operating system is meant to be an \open
operating system". All its abstractions are revealed
to a system designer or even application program-

4To give an idea on the actual �ne-grain design of Pure:
the OSEK family member is made of about 45 C++ classes
arranged in a 14-level (inheritance) hierarchy and o�ers about
600 methods.

mer. The entire system is represented as a library, or
a set of libraries, of small and \handy" object mod-
ules. These modules are small with respect to the
number of exported references to functions or vari-
ables. This helps, e.g., state-of-the-art binders cre-
ating slim-line operating systems that contain only
those components used (i.e. referenced) by a given
application. Prerequisite however is a highly modular
system architecture|and this is achieved by a family-
based design and an object-oriented implementation.

Pure has much in common with OSKit [4]. In-
stead of inventing a new system architecture, Pure
provides abstractions that allows one to construct
many of those architectures. An operating-system
architecture is not prescribed by Pure. Rather, a
construction set for the development of operating sys-
tems is established. Whether an operating system
is monolithic or based, e.g., on micro-kernel tech-
nology, is up to the actual \mechanic" who uses
Pure elements to create a product according to some
blueprint. In order to create a tailor-made operating
system, the blueprint comes from the application it-
self.

Besides undertaking a stepwise enrichment of
Pure by Unix-like system functions as part of stu-
dent projects, future work also concentrates on pro-
viding a family-based Java execution environment.
This plan encompasses two sorts of Java-related
work: (1) PureJava, to add minimal Java-Extensions
to Pure and (2) JavaPure, that aims at developing
a family of streamlined Java virtual machines. The
works are done in close cooperation with a major Ger-
man automobil manufacturer to provide a run-time
executive that combines the joint processing of soft
real-time (Java-based) telematic services and hard
real-time (C/C++/assembler-based) engine control
functions.

Portability, scalability, extensibility, and compos-
ability are the main keywords behind Pure to aim
at the development of application-oriented operating
systems. In this sense, the design and implementa-
tion of Pure adopts much of [2] to come up with a
highly exible software structure.

5



References

[1] D. Beuche, W. Schr�oder-Preikschat,
O. Spinczyk, and U. Spinczyk. Streamlin-
ing Object-Oriented Software for Deeply
Embedded Applications. In Proceedings of the

TOOLS Europe 2000, Mont Saint-Michel, Saint
Malo, France, June 5{8, 2000.

[2] J. O. Coplien. Multi-Paradigm Design for C++.
Addison-Wesley, 1999. ISBN 0-201-82467-1.

[3] J. Cordsen, T. Garnatz, A. Gerischer, M. D. Gu-
bitoso, U. Haack, M. Sander, and W. Schr�oder-
Preikschat. Vote for Peace| Implementation
and Performance of a Parallel Operating System.
IEEE Concurrency, 5(2):16{27, 1997.

[4] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin,
and O. Shivers. The Flux OSKit: A Substrate
for Kernel and Language Research. In Proceed-

ings of the Sixteenth ACM Symposium on Op-

erating System Principles, pages 38{51, Saint-
Malo, France, 1997.

[5] A. A. M. Fr�ohlich and W. Schr�oder-Preikschat.
Tailor-made Operating Systems for Embedded
Parallel Applications. In Proceedings of the 4th

International Workshop on Embedded HPC Sys-

tems and Applications (EHPC'99), number 1586
in Lecture Notes in Computer Science, pages
1361{1373, San Juan, Puerto Rico, April 16
1999. Springer-Verlag. ISBN 3-540-65831-9.

[6] A. N. Habermann, L. Flon, and L. Cooprider.
Modularization and Hierarchy in a Family of Op-
erating Systems. Communications of the ACM,
19(5):266{272, 1976.

[7] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-
win. Aspect-Oriented Programming. Techni-
cal Report SPL97-008 P9710042, Xerox PARC,
February 1997.

[8] H. Kopetz. Fundamental R&D Issues in Real-
Time Distributed Computing. Panel at the 3rd
ISORC, Newport Beach, USA, March 16, 2000.

[9] H. C. Lauer and R. M. Needham. On the Duality
of Operating System Structures. ACM Operat-

ing Systems Review, 13(2):3{19, Apr. 1979.

[10] J. Liedtke. On �-Kernel Construction. In
Proceedings of the Fifteenth ACM Symposium

on Operating System Principles, pages 237{250,
Copper Mountain Resort, Colorado, 1995.

[11] D. Mahrenholz. Aspektorientierte Realisierung
eines generischen Systemmonitors. Master's the-
sis, Otto-von-Guericke-Universit�at Magdeburg,
Germany, Apr. 2000.

[12] J. Nolte and W. Schr�oder-Preikschat. Dual
Objects|An Object Model for Distributed Sys-
tem Programming. In Proceedings of the Eighth

ACM SIGOPS European Workshop, Support

for Composing Distributed Applications, 1998.
http://www.acm.org/sigops/EW98/papers.html.

[13] OSEK/VDX Steering Committe. OSEK/VDX
Operating System, Oct. 1997. Version 2.0 revi-
sion 1.

[14] D. L. Parnas. On the Design and Development of
Program Families. IEEE Transactions on Soft-

ware Engineering, SE-5(2):1{9, 1976.

[15] QNX Software Systems Ltd. QNX System Ar-

chitecture, 1997. http://www.qnx.com/.

[16] F. Sch�on, W. Schr�oder-Preikschat, O. Spinczyk,
and U. Spinczyk. Design Rationale of the Pure
Object-Oriented Embedded Operating System.
In Proceedings of the International IFIP WG

9.3/WG 10.5 Workshop on Distributed and Par-

allel Embedded Systems (DIPES '98), Pader-
born, 1998.

[17] F. Sch�on, W. Schr�oder-Preikschat, O. Spinczyk,
and U. Spinczyk. On Interrupt-Transparent Syn-
chronization in an Embedded Object-Oriented
Operating System. In The Third IEEE Interna-

tional Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC 2000), pages
270{277, Newport Beach, California, March 15{
17, 2000. IEEE Computer Society. ISBN 0-7695-
0607-0.

6


