Open Components

*

[Position Paper]

Andreas Gal, Wolfgang Schroder-Preikschat, and Olaf Spinczyk
University of Magdeburg
Universitatsplatz 2
39106 Magdeburg, Germany

{gal,wosch,olaf}@Qivs.cs.uni-magdeburg.de

ABSTRACT

Traditional binary component models do not support
the application-specific customization of components at
integration-time '. This problem cannot be solved by in-
troducing new component languages, because it is rooted
in the properties of executable, binary code and not in the
implementation language of the component. In this paper
we suggest using “open components” instead of binary com-
ponent models. This novel approach uses source code as
the distribution form of components and allows a flexible,
tool-supported customization with respect to the applica-
tion environment. The result is a better chance to reuse a
component through adaptable interfaces and a very efficient
implementation of the composed software product.

1. MOTIVATION

A key factor for the success of component systems, especially
in resource restricted application domains, is the overhead
imposed by the component framework. Component software
should not require significantly more resources than a non-
component based implementation.

In traditional binary component models, especially those
which are independent of the implementation language and
thus have to use mechanisms like function argument mar-
shaling, the communication over component boundaries is
significantly more expensive than a similar plain language-
level procedure call. Arising from this, real-world compo-
nents are often limited in their granularity as many small
components would increase the overall communication over-
head.

*This work has been partly supported by the German Re-
search Council (DFG), grant no. SCHR 603/1-1 and SCHR
603/2.

lthe point in time where several components, which might
come from different vendors, are composed to form an ap-
plication

Designing the inner structure of a component is a trade-off
between flexibility with respect to all possible applications
and optimality with respect to the specific contexts the com-
ponent could be used in. The problem becomes more obvi-
ous by looking at a simple example (figure 1).

‘MemoryManager }—){ Strategy ‘

e

Figure 1: Flexible vs. specialized structure

‘MemoryManager }0—{ BestFit ‘

In this example a part of a memory management compo-
nent is presented. The left structure allows the selection of
a memory allocation strategy at run-time through an ab-
stract interface (Strategy). This flexibility can be useful
for some applications, but can impose a severe overhead for
applications that only need a single allocation strategy. The
requirements of these applications could already be served
with a simplified component structure as shown on the right-
hand side.

Binary components can be parameterized at run-time using
application-specific configuration information. This allows
to disable certain functionalities inside a component, which
might not be needed for all applications. Typical component
implementations follow this “one fits all” approach. On the
other hand the code for the disabled functionalities still re-
sides in the component. This imposes an overhead on those
applications that do not require these particular functional-
ities. To overcome this limitation it would be necessary to
adjust both, the internal architecture of a component, and
its external interface.

With a binary component model, it is close to impossible to
create an optimized version of a complex, feature-rich com-
ponent according to the specific application context. Much
more information about the component internals would be
needed than the plain interface description of a binary com-
ponent can deliver. On the other hand, even with sufficient
information available to decide for certain optimizations of
the component, it is technically very difficult to perform the
necessary manipulations like exchanging base classes and
eliminating dead code on binary code.

Using run-time mechanisms like dynamic (on demand) load-

ing of classes is only a partial solution here, because it saves
some memory space but requires an expensive, run-time con-
suming, infrastructure. Better than a blind run-time opti-
mization would be an informed customization of the com-
ponents at integration-time.

In the following sections of this paper we will present “open
components” as a solution that follows the ideas discussed
so far. Open components reconcile the advantages of binary
components such as reusability, robust integration, and in-
formation hiding with the efficiency of application-specific
structures and interfaces.

We will start with the rationale of open components in
section 2. In section 3 we will discuss the application-
specific customization of components using a “component
customizer”’tool. The paper ends with a discussion of re-
lated work in section 4 and our conclusions in section 5.

2. OPEN COMPONENTS

To overcome the described problems to customize binary
components, we suggest using components distributed in
source code. A main requirement on components is that
“a software component can be deployed independently and is
subject to composition by third parties” [7]. In our opinion
with source code components this is well possible, if an ad-
equate infrastructure is provided. We call these source code
components “open components”, because the component in-
ternals are accessible and thus can be subject to application-
specific optimizations.

Possible customizations are the elimination of unused code
or data and the avoidance of unnecessary condition checks
at run-time. To express the customization requirements
some abstract component view has to provided where needed
parts can be selected. It has many advantages to use a
class diagram for this purpose: Class diagrams are a widely-
known and implementation language independent concept.
They can be exported by case tools or automatically be de-
rived from the source code. Classes are an abstraction of
related code and data, thus removing a class removes both
at the same time. Run-time condition checks are often im-
plemented by dynamic binding in object-oriented software.
So a class diagram requirement can remove this as well. An
example requirement specification following this idea will be
presented in section 3.

Open components may depend on classes in the environ-
ment to do their job. These classes could be part of other
components or be provided by some application code. This
allows components to delegate work to other components
that are better specialized. Delegation is essential for reuse
and this is the main aim of components. For example an I/O
library component is specialized on formatting and buffering
of data. A device driver component is specialized on hard-
ware access. While the I/O library needs a device driver to
be useful it is not interested in the configuration options of
device drivers or any other technical details. Both can be
configured independently when they are plugged together,
only the required and the provided interface have to match.
Reuse comes into play if a third component also uses the
device driver.

The interesting questions are, how these components can
be developed independently and how the interface compat-
ibility can be checked. Of course the component cannot be
developed without the classes it depends on. Instead, the
component code can contain a “dummy” class that has ex-
actly the required interface. The methods of this class do
not need to be shipped because the component customizer
forces the user to change the class relations so that a real
class is used instead. For the development of the component
a testbed is used, which has to simulate possible environ-
ments (see figure 2).

~

S
-~ - - - - - - - - ----- N S| D
1/0 library }

[osiream || Devbriver |

[}
... much more J l
I

I J

[
|
|
|
|
|
|
|
|
|
N

Figure 2: A component testbed

The testbed has to issue test calls and provide all classes the
tested component depends on (SimDriver in figure 2). The
interface compatibility can be checked by the component
customizer with the integrated parser. It checks whether
all method calls and member accesses that are possible on
the dummy class will also be successful on the checked
class. With the dummy class mechanism components can
be developed independently and connected overhead-free at
integration-time.

If a component A depends on another component B there
must be a requirement specification, which describes the re-
quired parts and structure of B on behalf of A. An interest-
ing situation arises when a third component C also has some
requirements on B, because there could be a conflict. As an
example consider the memory management classes from fig-
ure 1. A could require an aggregation of BestFit into the
MemoryManager while component C could prefer FirstFit.

The conflict can be solved by keeping either the ab-
stract base class or by generating both versions of class
MemoryManager 2. The selection of one solution is a run-
time vs. code size trade-off, which is decided with a hint
from B’s component description. In both cases there will
be a feed-back into the requiring components A and C.
For example, for the second solution the name of the class
MemoryManager must be replaced. For the first solution a
strategy object must always be instantiated and handed over
to each MemoryManager. This manipulation is done automat-
ically. The code of A and C can still use a simple API.

New components can be constructed in a hierarchical man-
ner, i.e. a component can have sub-components. Such com-
posite component decides how its sub-components are con-
nected or if a dependency will be left open. The top-level
component is the application itself. At least here all depen-
dencies must be closed.

2this is similar to a template instantiation in C++.

3. COMPONENT CUSTOMIZATION

A robust integration of open components is only possible
with tool support. Any manual access to the source code
is error prone and must be avoided. In our implementa-
tion we have automated the component specialization and
integration process with a component customizer tool. The
implementation is based on the PUMA [6] code transforma-
tion system for C++. The tool provides the following basic
transformations:

e Selection of classes: non-required classes can be re-
moved if no other class depends on it.

e Renaming of classes: used to avoid name clashes if two
independent components declare a class with the same
name.

e Copying of classes: applied if the same class is needed
with different class relations at the same time.

e Simplification of class relations: this can be a modifi-
cation of a relation type or a change of the connected
partners.

e Binding of components: done by replacing “dummy”
class references with real references.

The whole transformation process is based on XML descrip-
tions of the components, i.e. their interface and structure,
and the component relations. Figure 3 shows a graphical
representation of four component descriptions at once: the
composite component MemoryManagement and its three sub-
components Economist, Strategy, and MemBlockManager.
The open dependencies EcoStrategy from the Economist
component and BlockManager from Strategy are closed.
Two other dependencies are left open.

Besides that a component description may contain a spec-
ification of requirements on its sub-components. As an ex-
ample figure 4 presents requirements on the memory man-
agement component as they might come from the top-level
“Application” component.

This specification means that the classes UserEco,
StrategyDecorator and FirstFit are required. All other
classes will automatically be removed, if none of the required
classes will need it after the customization.

The “binding” attribute defines the way that the corre-
sponding class will be used by the enclosing component.
StrategyDecorator and FirstFit do not needed a “bind-
ing” specification, because they should not be used directly.
They are only mentioned to require a change of component-
internal class relations (see below). The “binding” attribute
is used by the component customizer to do a virtual func-
tion call optimization. For instance, if it is known which
classes are instantiated the customizer can eliminate func-
tion implementations that can never be called. If it is fur-
ther known which classes are referenced functions can be
“devirtualized”, which saves the code and run-time needed
to perform the dynamic binding.

The “relation” tag is used to require changes of class rela-
tions. For example, FirstFit should aggregate an instance

of the class MDMDoubleLink instead of referencing any kind
of MemBlockMgr via an abstract interface class.

‘StrategyDecorator k{ FirstFit k—{ MBMDoubIeLink‘

1
| UsaEco [Profiler |

Figure 5: The memory management component af-
ter customization

Figure 5 shows the result of the component customization
with the requirement specification of figure 4. With this
structure the application gets a very specialized and easy
to use API. The required class UserEco can simply be in-
stantiated without any parameters. Furthermore the result-
ing code is very efficient. All abstract classes were removed,
thus no virtual functions waste memory space and run-time.
Measurements [2] showed that the needed memory space
could be reduced to 33% and run-time to 30% of the non-
specialized code without considering the size of classes that
could be completely omitted.

4. RELATED WORK

Source code components can also be constructed using a
meta language. For instance, the approach of Kamin et.
al [4] describes a functional meta language that provides
a data type Code. This can be used to generate compo-
nents from “object language” code fragments. The result
are customized, lightweight implementations as provided by
open components. While this approach is very powerful, we
doubt that an explicit representation of code is really neces-
sary here. At the same time it introduces the complexity of
a new language. Open components on the other hand can
be easily designed and implemented with well known design
patterns(3].

Some object-oriented programming languages offer metapro-
gramming constructs. C++, for instance, can be used with
its template specialization feature to implement template
metaprograms. We expect, that the structure modifications,
which we do with a code transformation system, are possible
with templates as well. Nevertheless this metaprogramming
technique implicates that the structural variability is visible
in the component source code. We would accept this if the
variability were class specific, but it is of a global nature.
For example, every pointer to an interface class is a point of
configuration and can become a pointer to some other class.
From this point of view the variability of open components
that is derived from the class diagram without any differ-
ences between individual classes is an aspect in the sense of
AOPI[5]. The best way to implement an aspect is to separate
the code.

5. CONCLUSIONS AND FUTURE WORK

In this paper we described the concept and some results
of our experiments with open components. The presented
integration-time customization is a technique to reconcile
reuse and specialization: one of the most important ques-
tions in component-oriented programming.

The result of this approach is a different view of a compo-
nent. It is not a “one fits all” implementation. Instead of

compatil

q NextFit

StrategyDecorator
A

i)

A

<| BestFit |

-

(N

|

f MemBlockManager

WorstFit =| BlockManager | ' compatible
i

MemBlockMgr

BlockMap | B|OCKLM

‘ MBMSingleLink ‘ ‘MBMDoubIeLink‘

Figure 3: An example: memory management components

<requirement component="MemoryManagement">
<class name="UserEco" binding="aggregate'>

<relation name="strategy" type="aggregate" class="Profiler">

</class>
<class name="StrategyDecorator">

<relation name="strategy" type="aggregate" class="FirstFit">

</class>
<class name="FirstFit" binding="aggregate'>

<relation name="blockmgr" type="aggregate" class="MBMDoubleLink">

</class>
</requirement>

Figure 4: A component requirement specification

that it is a building plan for a whole family of implementa-
tions from which a client can select the best.

On the language level this did not require a new
“component-oriented” programming language. Besides the
object-oriented implementation language only XML-based
descriptions were used. This design decision was not a mat-
ter of convenience but of separation of concerns.

In future work we will investigate how feature models [1]
could be used for the selection of open component family
members and find solutions to protect a component vendor’s
intellectual property.

6. REFERENCES

[1] K. Czarnecki and U. W. Eisenecker. Generative
Programming - Methods, Tools, and Applications.
Addison-Wesley Publishing, 2000.

A. Gal, W. Schréder-Preikschat, and O. Spinczyk. On
Minimal Overhead Operating Systems and
Aspect-Oriented Programming. In Proceedings of the
4th ECOOP Workshop on Object-Orientation and
Operating Systems (ECOOP-O0O0SWS’2001),
Budapest, Hungary, June 2001. ISBN 84-699-5329-X.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

[4]

[7]

Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995. ISBN 0-201-63361-2.

S. Kamin, M. Callahan, and L. Clausen. Lightweight
and Generative Components I: Source-Level
Components. In K. Czarnecki, U. W. Eisenecker
(Eds.): Generative and Component-Based
Software-Engineering. First International Symposium,
GCSE’99, Erfurt, Germany, Sept. 1999.
Springer-Verlag. Revised Papers. LNCS 1799.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and

S. Matsuoka, editors, Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP
’97), volume 1241 of Lecture Notes in Computer
Science, pages 220-242. Springer-Verlag, June 1997.

O. Spinczyk and M. Urban. The PUMA Project
Homepage, 2001.
http://ivs.cs.uni-magdeburg.de/~puma/.

C. Szyperski and C. Pfister. Workshop on
component-oriented programming. In ECOOP 1996
Workshop Reader, 1997.

