
A Data Preparation Framework
based on a Multidatabase Language

Kai-Uwe Sattler Eike Schallehn
Department of Computer Science

University of Magdeburg
P.O.Box 4120, 39016 Magdeburg, Germany

fkus|eike g@iti.cs.uni-magdeburg.de

Abstract

Integration and analysis of data from different sources
have to deal with several problems resulting from poten-
tial heterogeneities. The activities addressing these prob-
lems are called data preparation and are supported by var-
ious available tools. However, these tools process mostly
in a batch-like manner not supporting the iterative and ex-
plorative nature of the integration and analysis process. In
this work we present a framework for important data prepa-
ration tasks based on a multidatabase language. This lan-
guage offers features for solving common integration and
cleaning problems as part of query processing. Combin-
ing data preparation mechanisms and multidatabase query
facilities permits applying and evaluating different inte-
gration and cleaning strategies without explicit loading
and materialization of data. The paper introduces the lan-
guage concepts and discusses their application for individ-
ual tasks of data preparation.

1. Introduction

Preparing data is an important preprocessing step for
data analysis not only as part of data warehousing but also
for data mining. The main reason is that the quality of
the input data strongly influences the quality of the anal-
ysis results. In general, data preparation comprises several
subtasks: selection, integration, transformation, cleaning as
well as reduction and/or discretization of data. Often these
tasks are very expensive. So, sometimes it is stated that 50-
70 percent of time and effort in data analysis projects is re-
quired for data preparation and only the remaining part for
the actual analysis phase.

Currently, there are several tools available for different
preparation tasks, partially also as integrated suites, e.g.
products like Microsoft Data Transformation Service or

Oracle DataWarehouse Builder. However, these tools are
based mainly on a batch principle: the input data are read
from the database, processed in main memory according to
the tool-specific task and finally written back to the database
in place or into a new table. As a consequence either the
initial dataset is overwritten or for each preparation step an
additional copy is required. If the data come from different
external sources an auxiliary loading step has to precede the
preparation. Moreover, the preparation tasks are specified
operationally, i.e. have to be implemented by user-defined
procedures and scripts. Together, this raises problems es-
pecially, if the data that is subject of analysis is coming
from distributed and possibly heterogeneous sources, large
datasets have to be examined or it is not known at the be-
ginning of the analysis which preparation and/or analysis
techniques are really required.

Therefore, a better approach should enable to apply ma-
jor preparation steps in a more declarative manner, i.e. as
part of queries on virtual integrated datasets. In this way,
the preparation tasks could profit from the capabilities of a
database management system, e.g. optimization of queries,
parallelization and memory management. In addition, if this
approach would be combined with a multidatabase or gate-
way technology, an interactive and explorative preparation
and analysis without an explicit materialization is possi-
ble. Based on this observation we investigate in this pa-
per to which extent important and widespread problems of
data preparation are solvable by applying standard SQL fea-
tures as well as language features proposed recently in the
research literature and implemented in our multidatabase
query language FRAQL. This language provides powerful
query operations addressing problems of integration and
transformation of heterogeneous data [25] and therefore, it
is a suitable platform for building up a framework for data
preparation.

The paper is structured as follows. In Section 2 we dis-
cuss the process of data preparation, assign subtasks and

common techniques to the individual steps. Section 3 intro-
duces query language constructs supporting integration and
transformation of data. Cleaning techniques are presented in
Section 4 and problems of reduction and discretization are
addressed in Section 5. Section 6 discusses related work.
Finally, Section 7 concludes the paper, gives an overview to
the usage of FRAQL as part of a workbench for data inte-
gration and analysis and points out to future work.

2. Major Tasks in Data Preparation

In Section 1 we already mentioned the importance of
data preparation for analysis and mining. In the following
we will discuss the individual tasks of this process. For
a better understanding we first sketch the overall process
of analysis. There are various views on the analysis pro-
cess depending on the application domain, the required data
and analysis methods. One view is proposed by the CRISP-
DM consortium – the Cross-Industry Standard Process for
Data Mining – a reference model describing the individual
phases of the data mining process [8]. Following CRISP-
DM a data mining project consists of six phases. The first
phasebusiness understandingaddresses the understanding
of the project objectives and requirements from a business
perspective, the second phasedata understandingfocuses
on collecting, describing and exploring data for further ex-
amination. The third step isdata preparation, followed by
themodelingphase where modeling techniques (e.g., clas-
sification, clustering etc.) are selected and applied as well
as parameter sets are adjusted. Next, the models have to be
evaluated in order to fulfill the quality requirements (evalu-
ation). Finally, thedeploymentphase consists of tasks like
report generation and documentation.

As part of this process data preparation comprises all ac-
tivities required for constructing the input dataset for the
modeling from the initial (raw) dataset [14]. This includes

data selection: Identify data relevant and useful for analy-
sis and select the required attributes and tuples.

data integration: Combine data from multiple sources
and/or relations and construct new tuples and values.

data transformation: Transform the data on structural as
well as syntactic level meeting the requirements of the
analysis tools, for example normalization and scaling,
derive or compute new values and/or tuples.

data cleaning: Improve the data quality by selecting clean
subsets of data, filling in missing values, removing
noise, resolving inconsistencies and eliminating out-
liers.

data reduction: Obtain a reduced or compressed represen-
tation of the dataset in order to reduce the analysis ef-
fort by aggregating or discreticing data, reducing the

dimensionality or the volume of data, e.g. deriving a
sample.

In practice all these tasks – not only for preparation but also
as part of the overall process – do not form a strict sequence.
Rather the various techniques for data selection, preparation
and analysis are applied in an iterative, interactive and ex-
plorative manner. Additionally, often several techniques are
evaluated at the same time in order to find the most suitable
method or to combine results from different methods.

Beside modeling, where efficient data access and query
facilities are required, data preparation is one of the phases
which could benefit mostly from extended query language
support. Though standard SQL provides basic features for
filtering and transforming data, several subtasks as cleaning,
normalization, discretication and reduction require more
advanced operations. In the following we discuss query
primitives provided by FRAQL supporting these operations.

3. Integration and Transformation

Analyzing data from heterogeneous sources requires
transparent access to these sources in order to retrieve, com-
bine and transform the relevant data. This can be done ei-
ther by loading the data physically in a special database (e.g.
the staging area in a data warehouse environment or a ded-
icated analysis database) or by defining virtual views using
a multidatabase system. This virtual integration approach is
supported by our multidatabase language FRAQL. With re-
spect to data integration and transformation a multidatabase
language in general and in particular our language FRAQL
provides the following benefit:

� transparent access to external sources,

� integrating relations from different sources via join
and/or union operations,

� resolving description, structural and semantic conflicts
with the help of renaming operations, conversion and
mapping functions,

� advanced schema transformation, e.g. transposition of
relations, as well as resolving meta-level conflicts,

� resolving data discrepancies, i.e. instance-level con-
flicts, using reconciliation functions and user-defined
aggregates.

In the following we describe the corresponding FRAQL fea-
tures in detail. For illustration purposes we will use two
different scenarios. The first scenario describes a simpli-
fied data warehouse application and comprises a relation
SalesInfo containing regional sales information on var-
ious products as well as a relationAdvInfo containing ad-
vertising costs for products and regions:

SalesInfo (Product, Prod Group, Euro Sales,
Year)

AdvInfo (Product, Cost, Region, Year)

In the second scenario measurements are collected in a re-
lation Measurements consisting of the actual valuesX,
Y the geographical position of the point of measurement, a
timestamp and a classifying attribute:

Measurements (X, Y, Longitude, Latitude,
Time, Class)

3.1 Accessing and Integrating Heterogeneous
Sources

FRAQL is an extension of SQL and provides access
to relations hosted by external sources, e.g. full-featured
database systems, relational structured documents as well as
websites. The access is implemented via adapters which are
loadable at runtime and translate queries as well as query re-
sults between the global multidatabase level and the source
level.

FRAQL is based on an object-relational data model com-
prising user-defined types, views for integrating source re-
lations and tables for managing global data. We distinguish
two kinds of views:import viewsmapping relations from
a source to global relations andintegration viewscombin-
ing multiple views and/or tables. An import view is defined
in terms of a user-defined type. Here, for each attribute the
mapping to the source attribute can be defined either

� as simple renaming of the attribute,

� as value conversion by applying a user-defined func-
tion,

� or by using an explicit mapping table for converting
values.

An integration viewis a view on other global relations com-
bined by using operators like union,�-join and outer join.
These features provide a first solution for data transforma-
tion.

3.2 Schema Transformation

Based on global views further transformations on
schema as well as on instance level can be applied. Schema
level transformation in FRAQL includes – besides standard
SQL operations like projection and join – restructuring via
transposition.

Transposing means converting rows to columns and
vice-versa. As an example, where this kind of restructuring
is required, please consider the relations in Fig. 1.

Product Year RegionA RegionB RegionC
P1 2000 15 18 22
P2 2000 23 25 28

(a) Advertising

Product Cost Region Year
P1 15 RegionA 2000
P1 18 RegionB 2000
P1 22 RegionC 2000
P2 23 RegionA 2000
P2 25 RegionB 2000
P2 28 RegionC 2000

(b) AdvInfo

Figure 1. Example relations for transposition

The relationAdvertising contains the advertising
costs of products for the given regionsRegionA : : : Re-
gionC . For further processing, e.g. grouping and aggre-
gation, a relation according to the definition ofAdvInfo
is required. For this purpose FRAQL provides the TRANS-
POSETO ROWSoperation (as proposed in [6] and in a more
general form in [17]): for each tuple of the input relation
exactlyn tuples of the given structure are generated for the
output relation. Therefore the above relation can be trans-
formed as follows:

select *
from Advertising
transpose to rows

(Product, RegionA, ’RegionA’, Year),
(Product, RegionB, ’RegionB’, Year),
(Product, RegionC, ’RegionC’, Year),
as (Product, Cost, Region, Year);

The inverse operation to TRANSPOSETO ROWSis TRANS-
POSETO COLUMNS which takes a subset of the input rela-
tion containing the same value in a given column and con-
structs one output tuple with columns representing the dif-
ferent tuple values. In this way, the relationAdvInfo could
be transformed back according to the structure of relation
Advertising :

select *
from AdvInfo
transpose to columns

(Cost as RegionA when Region=’RegionA’
RegionB when Region=’RegionB’
RegionC when Region=’RegionC’)

on Product, Year
as (Product, Year, RegionA,

RegionB, RegionC);

The on part of the clause specifies the attributes used for
identifying groups of tuples which are transposed to ex-
actly one tuple. The operation is implemented similar to
the GROUP BY operation, though the resulting groups are
transformed into one tuple per group.

3.3 Data Transformation

Transformation on instance level means in fact convert-
ing values. Depending on the requirements of the follow-
ing analysis tasks various approaches are feasible. First of
all, simple value conversion can be performed using builtin
or user-defined function (UDF). Particularly, the following
functions are supported as builtin functions by FRAQL:

� string manipulation functions like Standard SQL func-
tions concat , substring as well assplit for
splitting strings on a given delimiter,

� general-purpose conversion functions, e.g.
string2double , string2date , etc.

A second common kind of transformation is normalization
of (numeric) values. Often attribute values have to be nor-
malized to lie in a fixed interval given by the minimum and
maximum values. In this case themin-max-normalizationis
applied. Leta be the attribute value,mino andmaxo the
minimum and maximum value ofa andminn andmaxn
the new interval boundaries for the normalized valuea0:

a0 =
a�mino

maxo �mino
(maxn �minn) +minn

This normalization can be implemented by the user-defined
functionmin max norm :

double min max_norm (double a,
double omin, double omax,
double nmin, double nmax) f

return (a - omin)/(omax - omin)*
(nmax - nmin) + nmin;

g

Another technique – thez-score-normalization– maps the
values of an attribute into the interval[�1 : : : 1] using the
mean and standard deviation of an attributea:

a0
=

a�mean

stddev

This is implemented by a second UDFzscore norm that
requires the mean and standard deviation of the attribute
values as parameters:

double zscore_norm (double a,
double mean, double stddev) f

return (a - mean)/ stddev;
g

Both normalization techniques require two scans on the in-
put relation: a first one for computing the aggregates and a
second one for the actual normalization step:

select avg(X), stddev(Y)
into :mean, :sdev from Measurements;
select zscore_norm(X,:mean,:sdev), Y, Class
from Measurements;

As already mentioned, all these operations can be applied
to virtual relations, i.e. views, without affecting the orig-
inal data. This simplifies the evaluation of different tech-
niques for integration and transformation of heterogeneous
data subject of analysis.

4. Cleaning

Integration and transformation are only the first steps in
data preparation. Due to the often different origins of data
resulting in different conventions for representation, errors
like mistyping, missing values or simply inconsistencies,
additional cleaning steps are necessary. In the following we
will concentrate on four subproblems:

� identifying and reconciling duplicates,

� filling in missing values,

� detecting and removing outliers,

� handling noise in data.

4.1 Duplicate Elimination

Because of the tight connection to the integration prob-
lem a first solution for duplicate elimination based on the
extended join and union operators in conjunction with rec-
onciliation functions was already introduced in Section 3.
However, the usage of reconciliation function is restricted
to binary operations. Therefore, FRAQL provides an addi-
tional and more powerful solution based on extended group-
ing and user-defined aggregates. The GROUP BY operator
supports grouping on arbitrary expressions: for each tuple
of the input relation a value is computed from the group-
ing expression and based on this, the tuple is assigned to a
group. Let us assume a UDFregion code computing the
region from the geographical position. Using this function
as a grouping criterion the regional averages of the mea-
surements can be computed:

select avg(X), avg(Y), rc
from Measurements
group by

region code (Longitude, Latitude) as rc;

After the GROUP BY operation each group consists of tu-
ples representing the same real-world entity. In the final step
all the tuples of a group have to be merged in one item, for
example by computing a value from conflicting attributes
or by using the most up-to-date information. This can be
implemented with the help of user-defined aggregates. A
user-defined aggregate (UDA) function is implemented in
FRAQL as a Java class with a predefined interface:

public interface UDA f
void init ();
boolean iterate (Object[] args);
Object result ();
Object produce ();

g

At the beginning, the methodinit is called. For each
tuple theiterate method is invoked. The final result is
obtained via the methodresult . Method produce is
used for UDAs with early returns and will be introduced
later. Because a UDA class is instantiated once for the
whole relation the “state” of the aggregate can be stored.
The following example shows a UDA returning the values
of the newest tuple in a simplified form omitting some im-
plementation details like value conversion.

class Newest implements UDA f
Timestamp tstamp;
double value;

void init () f tstamp = 0; value = 0.0; g

boolean iterate (double v,
Timestamp ts) f

if (ts > tstamp)
f value = v; tstamp = ts; g

return false ;
g

double result () f return value; g
g

The Java class is registered in the FRAQL query system us-
ing thecreate aggregation command:

create aggregation newest (double,
timestamp) returns double
external name ’Newest’;

Using both features together data discrepancies caused by
semantically overlapping can be resolved as shown in the
following example, where measurements from different sta-
tions are combined. The UDA collects all values of the at-
tribute and returns the value associated with the most up-to-
date measurement for a region:

select newest(X,Time), newest(Y,Time), rc
from Measurements1 union all

Measurements2 : : : union all
Measurements N

group by
region code (Longitude, Latitude) as rc;

Essentially both approaches are based on attribute equality.
However, sometimes the same objects may be referred to
in different sources by slightly different keys. In this case,
duplicates can only be identified based on similarity criteria.

As shown before the process of duplicate elimination
can be considered a two step process. In a first step we
have to identify entities that possibly relate to the same real
world object, which are reconciled in a second step. This
fits quite well with the concept of grouping and aggrega-
tion known from relational databases, but while reconcilia-
tion can be accomplished by extensions to aggregation con-
cepts including user-defined functions like shown before,
similarity-based grouping raises various problems. By spec-
ifying a similarity criterion in an appropriate way we can
establish a relation of pairwise similar tuples. This relation
must be considered atransitive, so to establish the equiva-
lence relation required for grouping we have to describe the
construction of the groups.

This can be done by a generalized concept for user-
defined aggregate functions. As an example, groups can be
build based on pairwise similarity by

� considering the transitive closure of similar tuples,

� only considering maximal groups that contain tuples
that are all pairwise similar, or

� building groups of tuples that are similar to a chosen
representative of this group.

Contrary to equality-based grouping these approaches con-
sider not only one tuple to derive a group membership,
but instead have to analyse one tuple in the context of the
whole input relation. As a consequence the interface for
user-defined grouping functions (UDG) is as follows:

public interface UDG f
void init (Object[] args);
boolean iterate (int tuple id,

Object[] values);
void finish ();
int getGroupForTuple (int tuple id);

g

Using theinit method the function is initialized before
the beginning of the grouping. Possible parameters, e.g. a
description of the similarity criterion, can be specified when
the function is registered. The function performs the group-
ing during iteration, if possible. All other actions required
for building groups take place after iteration is finished. Not
before that the FRAQL query engine can retrieve informa-
tion about group memberships. For this purpose surrogate
tuple and group identifiers are used internally.

A simple user-defined grouping function that groups
products based on similarity of the product name from an
integrated view ofSalesInfo from various sources can
be used as follows:

select product, sum(euro_sales)
from SalesInfo1 union all

SalesInfo2 : : : union all
SalesInfo N

group by similarity
SameProductName(product);

The user-defined grouping functionSameProductName
could for example be initialized with the name of a compar-
ison algorithm for strings and a threshold to compare the re-
turn value of this algorithm. For the following description of
a simple grouping algorithm represented by theSamePro-
ductName function we assume that groups are build using
the transitive closure of pairwise similar tuples. During iter-
ation a tuple identifier and the product name is passed on to
the function. The product name is compared to all product
names from previous iteration steps. If the string compari-
son function returns a value above the threshold, the tuple is
added to the group of the according previous tuple. If there
are multiple matches, the related groups are merged. If there
is no match, a new group containing this tuple is created.
When the iteration is finished, FRAQL calls thefinish
method. In this case the only thing to be done here is to set
a flag indicating that information about group memberships
can be retrieved.

While this approach is quite flexible, it also has several
disadvantages. The efforts for implementing user-defined
grouping functions can become expensive when complex
criteria or more advanced grouping algorithms are used.
Furthermore, there is less opportunity to optimize the
grouping when it is separated from query processing in
the query evaluator. Therefore, we currently consider im-
plementing some of the most useful concepts mentioned
above as query language primitives using a combination of
fuzzy logic, pre-defined and user-defined comparison func-
tions for atomic attributes, and the proposed strategies for
establishing an equivalence relation.

4.2 Missing Values

Considering the problem of missing values, e.g. NULL
values, we can describe several possible solutions. First of
all, the simplest approach is to remove the affected tuples
using the SQLnot null predicate:

select X, Y, Class, Time
from Measurements
where Y not null and Y not null ;

However, this is problematic if the percentage of missing
values is large. An alternative is to fill in the missing val-
ues with a value computed from others, e.g. the average or

the median of the attribute or the attribute value of all tu-
ples associated to the same class. The latter requires either
grouping or clustering. In the following example, grouping
is used to assign the average of the attribute value of a class
to a missing value. The average values are stored in a tem-
porary relationtmp(Class, X) :

insert into tmp (
select Class, avg(X) as X
from Measurements group by Class);

update Measurements
set X = (select X from tmp
where tmp.Class = Measurements.Class)

where X is null ;

4.3 Handling Noise in Data

Noise in data is caused by random errors or variance.
Among others there are two approaches for handling noise:
binning or histogram methods and regression.

Using thehistogram methodthe data are partitioned into
bins or buckets based on a certain attribute. For this purpose
the attribute domain is divided inton intervals and each item
value is associated to exactly one bucket.

We can distinguish betweenequi-width histograms,
where each bucket has the same interval length andequi-
height histograms, where each bucket contains the same
number of items. The first one is simpler to construct and
to use, the latter provides a better scaling.

In the following we will use a histogram relation

Histo (hmin, hmax, mean, cnt)

In this relation each tuple represents a bucket containing
valuesv with hmin � v < hmax, wheremean is the
average andcnt is the number of all values associated with
this bucket.

Equi-width histograms can easily be constructed us-
ing the extendedgroup by -operation. After choosing the
number of bucketsnbuckets and obtaining the domain
boundaries of the attributex:

select (max(X) - min(Y))/:nbuckets
into :width
from Measurements;

a histogram for the attributex containing the means of each
bucket is constructed as follows:

insert into Histo (
select id *:width, (id+1)*:width,

avg(X), count(X)
from Measurements
group by floor (X / :width) as id);

After partitioning the data, they can be smoothed by dif-
ferent criteria, e.g. bucket mean, bucket median or bucket
boundaries. In the following the bucket mean is used for
smoothing the values of attributex:

select mean, Y, Class, Time
from Measurements, Histo
where X >= hmin and X < hmax;

Creating equi-height histograms is slightly more complex.
First, the frequency of all occuring values have to be deter-
mined.

select X, count(*)
from Measurements group by Y;

From the number of tuples and the number of buckets the
height of each bucket can be computed. Next, we iterate
over the sorted frequency table and collect items until the
maximum bucket height is reached. The bucket boundary
is computed from the value of the current items. Using only
standard SQL the latter step cannot be formulated in a single
query and has to be implemented by an external procedure.

A more elegant solution is possible using the advanced
aggregation features provided by FRAQL. As introduced in
[30] user-defined aggregation functions withearly returns
are a powerful mechanism for incremental evaluation of ag-
gregates. FRAQL supports early returns by using a special
methodproduce as part of the UDA interface. If the ag-
gregate function wants to “return early”, it returns the value
true as result of the invocation ofiterate . In this case
the methodproduce is called from the query processor in
order to obtain the intermediate aggregation value. As an
example let us consider the implementation of a UDA for
computing the moving average:

class MvAvg implements UDA f
int num;
double value;

void init () f num = 0; value = 0.0; g
boolean iterate (double v)

f num++; value += v; return true ; g
double produce ()

f return value / num; g
double result () f return produce (); g

g

UDAs with early returns simplify the construction of equi-
height histograms. For this purpose three UDAs are re-
quired:b lb for computing the lower boundary,b ub for
computing the upper boundary andb mean for computing
the bucket mean. These UDAs are now used in the follow-
ing query for obtaining the histogram with buckets of height
height for the attributex:

insert into Histo (

select b_lb(X, cnt, :height),
b_ub(X, cnt, :height),
b_mean(X, cnt, :height), :height

from (select X, count(*) as cnt
from Measurements
group by X order by X asc));

The implementation of the UDAs is sketched forb ub be-
low:

class Bucket ub implements UDA f
int height;
double upper, lower;
: : :

boolean iterate (double val, int cnt,
int maxh) f

height += cnt;
if (height >= maxh) f

lower = upper =
compute split (val, maxh);

height = maxh - height;
return true ;

g else f
upper = val;
return false ;

g
g

double compute split (double val,
int maxh) f

return maxh / height *
(val - lower) + lower;

g

double produce () f return boundary; g
g

Please notice that this implementation is oriented to nu-
meric attributes. For ordinal attributes an existing attribute
value has to be chosen during the split instead of computing
the new boundary.

Based on this histogram the data can be smoothed by
the means of the buckets already shown for equi-width his-
togram.

4.4 Detecting Outliers

Histograms are also an appropriate tool for detecting out-
liers. Another frequent used technique for this purpose is
regression. Inlinear regressionalso known as least square
method the goal is to find a straight line modeling a two-
dimensional dataset. This liney = �x + � is specified
by the parameters� and� which are calculated from the
known values of the attributesx andy. Let

x =
1

n

X
xi and y =

1

n

X
yi

then holds

� =

P
(xi � x)(yi � y)P

(xi � x)2
and � = y � �x

Obtaining the parameters for this line is straightforward if a
UDA calc alpha is used:

select avg(X), avg(Y) into :xa, :ya
from Measurements;

select calc alpha (X, Y, :xa, :ya)
into :alpha
from Measurements;

beta := ya - alpha * xa;

The parametersalpha andbeta can now be used to re-
move data items far away from the regression line. For ex-
ample, this can be simply decided based on the absolute
distance or by removingn percent of items with the largest
distance. The first approach is expressible in a single query
using an expression for computing the distance:

select * from Measurements
where abs(:alpha*X+:beta - Y) <

:threshold;

The second criterion requires a mechanism for limiting
the cardinality of a query result. In FRAQL this is supported
by the LIMIT FIRST clause, which cuts the result set after
the specified number of tuples. So, the query for removing
5 percent of tuples with the largest distance as outliers can
be written as:

select X, Y,
abs(:alpha*X+:beta - Y) as dist

from Measurements
order by dist
limit first 95 percent ;

5. Data Reduction

The last subproblem of data preparation addressed in our
framework is reduction. Sometimes the volume of data is
too large for an efficient analysis. Therefore, we need a re-
duced representation of the dataset that produces nearly the
same analysis results. Here, several solutions are possible,
e.g. aggregating the data as usually performed in data ware-
house environments or discarding non-relevant dimensions.
The first approach is normally implemented using GROUP

BY and aggregation, the second approach requires only pro-
jection. Two other approaches directly supported in FRAQL
are sampling and discretization.

Samplingmeans to obtain a representative subset of data.
Various kinds of sampling were developed recently. Cur-
rently, in FRAQL only random sampling as presented in

[29, 22] is implemented. A sample of a relation or query
result with the given size is derived with the help of the
LIMIT SAMPLE clause:

select * from Measurements
limit sample 30 percent ;

Obviously, the sampled data should be stored in a new rela-
tion for further efficient processing.

Sampling reduces the number of tuples by choosing a
subset. In contrast,discretizationis aimed to reducing the
number of distinct values for a given attribute, particu-
larly for analysis methods requiring discrete attribute val-
ues. Possible solutions for discretization are

� histogram-based discretization,

� discretization based on concept-hierarchies [13],

� entropy-based discretization [9].

Considering only the histogram-based approach numeric
values could be replaced by a representative discrete value
associated with the containing bucket as already discussed
in Section 4.3. Here, both kinds of histograms are applica-
ble. An alternative approach is to build histograms by hand
taking domain knowledge into consideration, e.g. specify
higher-level concepts like income class or price classifica-
tion (cheap, medium-priced, expensive) together with the
associated interval boundaries. Independent from the kind
of construction, the histograms are used as illustrated al-
ready.

6. Related Work

In recent years there has been much effort on support for
individual tasks of data preparation for data warehousing
and data mining. Especially for the transformation problem
there are many commercial tools available. These ETL (“ex-
traction, transformation, loading”) tools [4, 1] address dif-
ferent kinds of data preparation, ranging from general pur-
pose tools and tool suites to rather specialized tools for com-
mon formats. Moreover, so called auditing tools are able
to detect and eliminate discrepancies. However, these tools
support only limited set of transformations or the trans-
formation has to be implemented by user-defined scripts
or procedures. Therefore, they perform transformation in a
batch-like manner not supporting an explorative and inter-
active approach.

Furthermore, several approaches addressing special data
cleaning and transformation problems were proposed.
AJAX [10] is a cleaning tools that supports clustering and
merging duplicates. It is based on a declarative specification
language. SERF [5] provides primitives for schema evolu-
tion and data transformation. An approach for schema trans-
formation is described as part of SchemaSQL [17], a lan-
guage offering restructuring operations. In [1] a declarative

transformation language YATL is proposed and automation
of the translation based on schema similarities is discussed.
Methods to detect a maximum number of duplicate items
(exactly or approximately) and to derive cleaning rules are
proposed in [15]. An approach for resolving attribute value
conflicts based on Dempster-Shafer theory, which assigns
probabilities to attribute values, is described in [20]. An
object-oriented data model where each global attribute con-
sists of the original value, the resolved value and the conflict
type is presented in [19]. These individual values are ac-
cessible by global queries. In addition, for each attribute a
threshold predicate determining tolerable differences and a
resolution function for an automatic conflict resolution can
be defined. Another approach [26] introduces the notion of
semantic values enabling the interoperability of heteroge-
neous sources by representing context information. An ad-
vanced application of statistical data analysis for deriving
mapping functions for numerical data is described in [21].

Much recent work is dedicated to middleware support-
ing the integration of heterogeneous data, e.g. multidatabase
languages like MSQL [12] and SQL/M [16], federated
database systems like Pegasus [2] and IBM DataJoiner [28]
as well as mediator-based sytems like TSIMMIS [11], In-
formation Manifold [18], DISCO [27] and Garlic [3]. Pe-
gasus offers a functional object-oriented data manipula-
tion language called HOSQL with non-procedural features,
DataJoiner is based on DB2 DBMS. In mediator systems
such as TSIMMIS the mediator is specified by a set of rules.
Each rule maps a set of source objects into a virtual me-
diator object. In this way, transformations are defined by
appropriate rules. The problem of combining objects from
different sources (object fusion) in mediators is discussed in
[23].

A totally different approach is WHIRL [7], which deals
with instance heterogeneity during integration. Here, tex-
tual similarity is used for computing joins between rela-
tions from different sources. This permits integration with-
out normalization of values but is restricted to textual data.

There has been some work on query language exten-
sions addressing preparation and analysis tasks. In [30]
user-defined aggregates with early returns and their appli-
cation for data mining is discussed. [6] presents SQL/MX,
a query language offering features like transposing and sam-
pling. Our approach is partially inspired by these query ex-
tensions but combines these with multidatabase language
features.

7. Conclusions

Data preparation is an important task for data warehous-
ing and data mining. As part of this process several prob-
lems have to be dealt with: data integration and transforma-
tion, detecting inconsistencies in data coming from multiple

sources, removing outliers, suppressing noise and reducing
data. However, writing dedicated routines addressing indi-
vidual subproblems can be an expensive and error-prone
process especially for information fusion [24] – the inte-
gration and analysis of data from heterogeneous sources.

In this paper we have presented a framework for data
preparation based on the multidatabase query language
FRAQL. The benefit of using a multidatabase language
is the virtual integration combined with the ability to ap-
ply transformation and cleaning operations without copying
and physically manipulating the initial dataset. So, it is pos-
sible to check various strategies for integration and cleaning
with reduced effort. Thereby, the objective of our work is
not to invent a new language or add general-purpose opera-
tions but rather to identify lightweight extensions dedicated
to data preparation and analysis and add them to a SQL-like
query language. Implementing these extensions as database
primitives opens the possibility to profit from the inherent
capabilities of database management systems.

The presented language extensions are implemented as
part of the FRAQL query processor which forms the core of
an engine for information fusion tasks. This engine offers
an extensible set of operators for data preparation and anal-
ysis tasks. These operators are parameterizable and gener-
ate as well as execute FRAQL queries as presented in this
paper. Combined with user interface and visualization tools
a more interactive and iterative approach for data analysis
is achieved. For future work the support of more advanced
cleaning operations, e.g. similarity-based entity identifica-
tion, as well as analysis and mining operations is planned.

References

[1] S. Abiteboul, S. Cluet, T. Milo, P. Mogilevsky, J. Sim´eon,
and S. Zohar. Tools for Data Translation and Integration.
IEEE Data Engineering Bulletin, 22(1):3–8, 1999.

[2] R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. Ketabchi,
W. Litwin, A. Rafii, and M.-C. Shan. The Pegasus Heteroge-
neous Multidatabase System.IEEE Computer, 24(12):19–
27, December 1991.

[3] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, R. Fagin,
M. Flickner, A. Luniewski, W. Niblack, D. Petkovic, J. T.
II, J. Williams, and E. Wimmers. Towards Heterogeneous
Multimedia Information Systems: The Garlic Approach. In
O. A. Bukhres, M. T.Özsu, and M.-C. Shan, editors,Proc.
RIDE-DOM ’95, 5th Int. Workshop on Research Issues in
Data Engineering - Distributed Object Management, Taipei,
Taiwan, pages 124–131. IEEE-CS, 1995.

[4] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology.SIGMOD Record,
26(1):65–74, 1997.

[5] K. T. Claypool, J. Jin, and E. A. Rundensteiner. SERF:
schema evolution through an extensible, re-usable and flex-
ible framework. InProceedings of the 1998 ACM 7th Int.

Conf. on Information and Knowledge Management (CIKM),
pages 314–321, 1998.

[6] J. Clear, D. Dunn, B. Harvey, M. L. Heytens, P. Lohman,
A. Mehta, M. Melton, L. Rohrberg, A. Savasere, and
R. M. W. ans Melody Xu. NonStop SQL/MX Primitives for
Knowledge Discovery. InProc. 5th ACM SIGKDD Int. Con-
ference on Knowledge Discovery and Data Mining 1999,
San Diego, CA USA, pages 425–429, 1999.

[7] W. Cohen. Integration of Heterogeneous Databases Without
Common Domains Using Queries Based on Textual Similar-
ity. In L. Haas and A. Tiwary, editors,SIGMOD 1998, Proc.
ACM SIGMOD Int. Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA, pages 201–212.
ACM Press, 1998.

[8] CRISP-DM Consortium. CRISP 1.0 Process and User
Guide, 1998. http://www.crisp-dm.org/.

[9] U. Fayyad and K. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In
Proc. 13th Int. Joint Conf. on Artificial Intelligence, Cham-
bery, France, pages 1022–1027. Morgan Kaufmann, 1993.

[10] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax:
An extensible data cleaning tool. In W. Chen, J. F.
Naughton, and P. A. Bernstein, editors,Proceedings of the
2000 ACM SIGMOD International Conference on Manage-
ment of Data, May 16-18, 2000, Dallas, Texas, USA, vol-
ume 29, page 590. ACM, 2000.

[11] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom.
The TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems,
8(2):117–132, Mar./Apr. 1997.

[12] J. Grant, W. Litwin, N. Roussopoulos, and T. Sellis. Query
Languages for Relational Multidatabases.VLDB Journal,
2(2):153–171, 1993.

[13] J. Han and Y. Fu. Dynamic Generation and Refine-
ment of Concept Hierarchies for Knowledge Discovery in
Databases. InAAAI’94 Workshop on Knowledge Discovery
in Databases (KDD’94), Seattle, WA, pages 157–168, 1994.

[14] J. Han and M. Kamber.Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2000.

[15] M. Hernandez and S. Stolfo. Real-world data is dirty: Data
Cleansing and the Merge/Purge problem.Journal of Data
Mining and Knowledge Discovery, 2(1):9–37, 1998.

[16] W. Kelley, S. Gala, W. Kim, T. Reyes, and B. Graham.
Schema Architecture of the UniSQL/M Multidatabase Sys-
tem. In W. Kim, editor,Modern Database Systems, chap-
ter 30, pages 621–648. ACM Press, New York, NJ, 1995.

[17] L. Lakshmanan, F. Sadri, and I. Subramanian. SchemaSQL
- A Language for Interoperability in Relational Multi-
Database Systems. In T. M. Vijayaraman, A. Buchmann,
C. Mohan, and N. Sarda, editors,VLDB’96, Proc. of 22th
Int. Conf. on Very Large Data Bases, 1996, Mumbai (Bom-
bay), India, pages 239–250. Morgan Kaufmann, 1996.

[18] A. Levy, A. Rajaraman, and J. Ordille. Querying Heteroge-
neous Information Sources Using Source Descriptions. In
T. Vijayaraman, A. Buchmann, C. Mohan, and N. Sarda,
editors,VLDB’96, Proc. of 22th Int. Conf. on Very Large
Data Bases, 1996, Mumbai (Bombay), India, pages 251–
262. Morgan Kaufmann, 1996.

[19] E.-P. Lim and R. Chiang. A Global Object Model for
Accommodating Instance Heterogeneities. In T. W. Ling,
S. Ram, and M.-L. Lee, editors,Conceptual Modeling - ER
’98, 17th International Conference on Conceptual Model-
ing, Singapore, November 16-19, 1998, Proceedings, vol-
ume 1507 ofLecture Notes in Computer Science, pages 435–
448. Springer, 1998.

[20] E.-P. Lim, J. Srivastava, and S. Shekhar. Resolving Attribute
Incompatibility in Database Integration: An Evidential Rea-
soning Approach. InProc. of the 10th IEEE Int. Conf. on
Data Engineering, ICDE’94, Houston, Texas, USA, 14–18
February 1994, pages 154–163, Los Alamitos, CA, 1994.
IEEE Computer Society Press.

[21] H. Lu, W. Fan, C. Goh, S. Madnick, and D. Cheung. Dis-
covering and Reconciling Semantic Conflicts: A Data Min-
ing Perspective. InProceddings of the 7th IFIP 2.6 Working
Conference on Data Semantics (DS-7), Leysin, Switzerland,
1997.

[22] F. Olken. Random Sampling from Databases. PhD thesis,
UC Berkeley, April 1993.

[23] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina.
Object Fusion in Mediator Systems. In T. Vijayaraman,
A. Buchmann, C. Mohan, and N. Sarda, editors,VLDB’96,
Proc. of 22th Int. Conf. on Very Large Data Bases, 1996,
Mumbai (Bombay), India, pages 413–424. Morgan Kauf-
mann, 1996.

[24] K. Sattler and G. Saake. Supporting Information Fusion with
Federated Database Technologies. In S. Conrad, W. Has-
selbring, and G. Saake, editors,Proc. 2nd Int. Workshop
on Engineering Federated Information Systems, EFIS’99,
Kühlungsborn, Germany, May 5–7, 1999, pages 179–184.
infix-Verlag, Sankt Augustin, 1999.

[25] K.-U. Sattler, S. Conrad, and G. Saake. Adding Con-
flict Resolution Features to a Query Language for Database
Federations. Australian Journal of Information Systems,
8(1):116–125, 2000.

[26] E. Sciore, M. Siegel, and A. Rosenthal. Using Semantic
Values to Facilitate Interoperability Among Heterogeneous
Information Systems.ACM Transactions on Database Sys-
tems, 19(2):254–290, June 1994.

[27] A. Tomasic, R. Amouroux, P. Bonnet, O. Kapitskaia,
H. Naacke, and L. Raschid. The distributed information
search component (disco) and the world wide web. In
J. Peckham, editor,SIGMOD 1997, Proceedings ACM SIG-
MOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA, pages 546–548.
ACM Press, 1997.

[28] S. Venkataraman and T. Zhang. Heterogeneous Database
Query Optimization in DB2 Universal DataJoiner. In
A. Gupta, O. Shmueli, and J. Widom, editors,VLDB’98,
Proc. of 24rd Int. Conf. on Very Large Data Bases, 1998,
New York City, New York, USA, pages 685–689. Morgan
Kaufmann, 1998.

[29] J. Vitter. An Efficient Algorithm for Sequential Random
Sampling. ACM Transactions on Mathematical Software,
13(1):58–67, March 1987.

[30] H. Wang and C. Zaniolo. User-Defined Aggregates for
Datamining. In1999 ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 1999.

