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Abstract

In recent times the size of the databases has grown many folds
and many of the decision support systems need a very fast and
interactive response from these DBMS, but the queries to re-
trieve the results are at times very complex. In this work we have
forwarded a new approach to this problem, by pre-computing
the summary statistics in the form of histograms on the data and
evaluating the random samples from them in order to answer the
given queries quickly, but approximately.
We believe that most of the decision support systems or OLAP
applications can tolerate small errors in terms of getting the
answers quickly.
This work constitute a part of our larger work which is the
development of an ef£cient Incremental data analysis engine.

Keywords: Approximation, Histograms, Sampling, OLAP,
Data analysis.

1 Introduction

The amount of data managed by databases like data warehouses
for decision support increases rapidly. In modern times we have
seen the rise and increase in not only the size but also the need
to retrieve the piece of information for the data analysis for sci-
enti£c and business applications. To get the relevant piece of
information there is some trade off between accuracy, space and
time.

The applications developed for the data analysis during last
few years are generally termed ason-line analytical processing
(OLAP) applications ordecision support systems. These appli-
cations support the analysis of the data and the deduction of in-
teresting trend information. In order to return us the trend in-
formation they analyze a large amount of data and also involve
complex aggregate queries. So they are expected to return the
response result at the earliest but despite the appreciable sup-
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port from commercial databases for OLAP applications during
the last some years, they still require to improve the capability to
reduce the response times. In these data analysis applications we
often want to get the ‘£rst’ results quickly, e.g., in order to £nd
interesting regions of the information space.

In this paper, we are presenting a novel approach that will
appreciably reduce the response times to the queries placed to
the system and will quickly return approximate answers to the
queries. The basic idea is to pre-compute a statistical summary
of the actual data and then return the answers based on this sum-
mary. As this statistical summary can often £t in the main mem-
ory the response time can be reduced signi£cantly. This work
forms the part of our main work to develop an ef£cient data anal-
ysis engine. The basis of this approach lies on that many OLAP
applications can tolerate small errors in query responses in re-
turn.

The remainder of this paper is organized as follows. After
a short survey of related work, the subsequent section gives a
brief introduction to the techniques of histograms and sampling.
These are two possible paradigms to get a summary that de-
scribes the distribution of values. After this introduction the ap-
plication of these methodologies to the generation of approxi-
mate results is presented. The paper £nishes with the directions
of future work and the conclusions.

2 Related Work

In [4] Hellerstein et al. proposed a method for on-line aggrega-
tion in which the results of aggregate based queries are re£ned
and updated incrementally until the exact answer is obtained. In
this approach the answers are provided from the original data
which resides on the disk.

Where as to trade off accuracy for the response time a tech-
nique was developed by Poosla and Ganti which is based on cre-
ating approximate histograms, which summarizes the contents of
the data cube and provide approximate answers to any aggregate
query from these summaries [15].

Histograms do play an important role in getting the approxi-



mate answers as they are able to gather the statistical summary
of the data. The computation and maintenance of histograms
was addressed by [3, 6]. The class of v-optimal histograms can
be obtained as proposed by Poosla [11] by using a randomized
algorithm. This algorithm is applicable independent of the sort
and source parameter choice. It is based on the iterative improve-
ment technique, which has been proposed earlier in the context
of search studies for query optimization [13, 5].

The authors of [10] and [9] describe different kinds of uniform
random sampling techniques in a DBMS. They discuss several
techniques for uniform random sampling on relations or on out-
put of relational operators.

One problem concerning sampling in relational DBMS is the
placement of the sampling operation in the access plan. The
naive samplingstrategy applies sampling after all other opera-
tions have been executed. This in most cases is inef£cient, be-
cause the time consuming operations like joins work on all the
data even if the desired sample size is relatively small. In [2]
further join sample strategies were proposed. These also need
statistical information from histograms.

3 Reducing the Data for Fast Query Ap-
proximation

In this section two methodologies of reducing the data are in-
troduced. Afterwards the idea of combining them to a com-
pound technique is discussed. The £rst approach to minimize
the amount of data to be considered for retrieving approximate
answers is to gather statistics which describe the data distribu-
tions. In spite of examining the complete data set these statistics,
usually stored in histograms, can be used to estimate the result
values. Another technique is to calculate samples of the original
data in order to decrease the number of tuples.

3.1 Estimation of Aggregates Based on His-
tograms

A histogram should reduce the data by describing the data dis-
tributions. Assume the attributeX of the relationR is de£ned
upon the domainD andV ⊆ D is the value set ofX with all val-
ues that are present inR. Furthermore letV = {vi|1 ≤ i ≤ D}
with vi < vj for all i < j. The frequencyf(vi) or fi of value
vi is the number of tuplest ∈ R with t.X = vi. The cumula-
tive frequencyci is the number of tuplest ∈ R with t.X ≤ vi

and accordinglyci =
∑i

j=1 fi. A data distribution is then a set
of pairsT = {(v1, f1), (v2, f2), ..., (vD, fD)}. The cumulative
data distribution isT C = {(v1, c1), ..., (vD, cD)}.

In classic mathematical literature a histogram is often de-
scribed as a graphical representation of values in rectangles. The
value of the variable is the height of rectangle. In this way a
mathematical function of the according distribution can be ap-
proximated. According to [11] a histogram is constructed by
partitioning the data distribution in disjoint subsets called buck-
ets.

In literature are several classes of histograms discussed, which
are listed below:

• Equi-sum(V,S) histograms are also known asequi-width.
They group contagious ranges of attributes into buckets.
The sum of the spreads of the values in one bucket is ap-
proximately equal to1/β-times the sum of the spreads of
all values.

• The class ofequi-sum(V,F) histograms is the same like
equi-heightor equi-depthhistograms. The sum of the fre-
quencies of the values in all buckets should be equal. If the
frequencyFi of a valuevi is higher than the buckets size,
the valuevi will appear in different buckets.

• The v-optimal histogram is the histogram with the least
variance of all histograms with the same number of buckets.
The variance is de£ned asV =

∑β
i=1 niVi whereni is the

number of values in thei-th bucket (1 ≤ i ≤ β) andVi is
the variance of the source values in thei-th bucket.

• Another partition constraint isMaxDiff . A bucket bound-
ary is placed between two adjacent source parameter values
(in sort parameter order), if the difference between them is
one theβ − 1 largest.

• In acompressedhistogram then most frequent source val-
ues are stored separately inn singleton buckets. The re-
maining values are divided intoβ−n buckets like proposed
the equi-height constraint. There are different methods to
computen.

• Spline-basedhistograms minimize the maximum differ-
ence between a source value and the average of the assigned
bucket.

Unlike histograms on single attribute, multidimensional his-
tograms are built over multiple attributes in order to capture the
joint frequency distributions accurately. Muralikrishna and De-
Witt [8] have presented techniques to construct multidimensional
histograms ef£ciently. For the scope of this paper we present an
example of two dimensional histogram, for the detail study the
suggested reading is by [11].

The histogram is built on two attributes of a relation. LetA0

andA1 be the attributes of some relation R, the setD0 × D1

is partitioned into buckets, which might look like as shown in
Fig. 1.

Figure 1: Multidimensional histogram [11]

If histograms are available, they can be used to accelerate ag-
gregate queries like demonstrated in the following simpli£ed ex-
ample by estimating the aggregate values. Here we use an equi-
height histogram to demonstrate the principle. The formulas ex-
cept the last one are directly applicable to other histogram types.

Suppose we have a relationR with just one attributea and 20
data sets like shown in Tbl. 1. Let the number of buckets be four.
Then Tbl. 2 shows the respective equi-height histogram, where
the £rst value is the smallest attribute value of the base relation:



2 99 23 65 34 93 7 16 31 20
27 10 55 34 87 24 27 41 87 98

Table 1: Example values of attributea

v0 v1 v2 v3 v4

2 23 34 65 99

Table 2: Histogram with four buckets

Each bucket holds £ve values. The upper bounds of the four
buckets are 23, 34, 65 and 99. Suppose that the user requests the
following information:

select avg(a) from R where a <= 50

As the average can be deducted from the sum and the count of
attributes, we at £rst take a look at theses aggregation functions.
The exact count of data sets with an attribute value less or equal
than 50 computes to 13. In the above paragraph there is an exam-
ple of an estimation of the number of attribute values in a given
range. The general form of the estimation formula is given in
Equation 1 for different types of intervals, wherekmin andkmax

denote the relative part of the whole bucket size according to
amin andamax respectively.

count (a) =
D∑

i=1

f(vi)

count (a ≤ amax) =
∑

vi≤amax

f(vi) + kmax

count (amin ≤ a) = kmin +
∑

vi−1>amin

f(vi)

count (amin ≤ a ≤ amax)
= kmin

+
∑

vi−1>amin
vi≤amax

f(vi)

+ kmax

(1)

The de£nition of the relative partsk is shown in Eq. 2:

kmin = f(vimin) · vimin − amin

vimin − vimin−1

,wherevimin = min{v|v > amin}

kmax = f(vimax) ·
amax − vimax−1

vimax − vimax−1

,wherevimax = min{v|v > amax}

(2)

So, for our example the estimated answer to the query

select count(a) from R where a <= 50

is calculated as

count(a ≤ 50) ≈
∑

vi≤50

f(vi) + kmax

= 5 + 5 + 5 · 50 − 34
65 − 34

≈ 12.6,

while the exact answer is 13.
The next aggregation function to be examined is the sum. The

exact sum of all attribute values which are less than or equal to
50 is 326. The estimation formula is provided in Eq. 3 for the
different types of intervals:

sum (a) =
D∑

i=1

f(vi) · (vi −
vi − vi−1

2
)

=
D∑

i=1

f(vi)
vi + vi−1

2

sum (a ≤ amax) =
∑

vi≤amax

f(vi)
vi + vi−1

2

+ kmax
vimax + vimax−1

2

sum (amin ≤ a) = kmin
vimin + amin

2

+
∑

vi−1>amin

f(vi)
vi + vi−1

2

sum (amin ≤ a ≤ amax)

= kmin
vimin + amin

2

+
∑

vi−1>amin
vi≤amax

f(vi)
vi + vi−1

2

+ kmax
vimax + vimax−1

2

(3)

Using this formula for the example a result of 332.7 is estimated
as follows:

sum(a ≤ 50)

≈ 5
2 + 23

2
+ 5

23 + 34
2

+ 5
50 − 34
65 − 34

· 34 + 65
2

≈ 332.7

As mentioned above the average value now can be estimated
by combining the estimated sum of the attribute values and the
count of data sets:

avg =
sum

count
(4)

For the initial example query this value computes to 26.4 while
the exact value is approximately 25.1. The formulas out of Eq. 1
through 3 can be simpli£ed, if the buckets of the histogram are
equi-height like in the example discussed before. Here just the
estimation formula for the sum is given. Letf be the frequency
of all buckets. Then the sum of the values of a given range can
be estimated by:

sum (amin ≤ a ≤ amax)

=
f

2

(
v2

imin
− a2

min

vimin − vimin−1

+
∑

vi−1>amin∧vi≤amax

(vi + vi−1)

+
(amax − vmax−1) (vmax + vmax−1)

vmax − vmax−1

)
(5)



In some cases only retrieving a single aggregate value may not
be enough for the desired analysis purposes. Theses are typical
applications of sampling methods.

3.2 Estimation of Samples Based on Histograms

Sampling techniques reduce the data by picking out a given num-
ber of data sets from the total volume. Because in database sys-
tems there usually is no random access to the data, sequential
sampling algorithms have to be deployed. The algorithms differ
widely whether the number of initial data sets has to be known
or not. If no cardinality information is available sampling with
reservoir [7] is necessary. These algorithms do not need the ini-
tial size, but provide the £rst tuples only after the complete scan
of the complete data set. In contrast non-blocking algorithms
like described in [14] can be used, if the number of data sets is
known and direct access to them is possible.

In this work we propose a novel approach of estimating sam-
ples. As samples are usually used to gain a cloudy picture of the
real data, in many cases an estimated sample should be suf£cient.
This is also at £rst discussed on the simple one-dimensional ex-
ample introduced in Section 3.1. Let the query be:1

select a from R
where a <= 50
limit sample 5

If the user only wants to know how the selected rows are dis-
tributed in their domain, it is not that important, that he gets
£ve in fact existing rows out of R. The desired information is
in which areas the attribute values are.

In the example we have three histogram’s buckets to consider.
The £rst two intervals[2; 23] and[23; 34] contain 5 values each,
while the third interval[34; 50] contains approximatelykmax val-
ues. So, the probabilityP , that a value less than 50 resides in the
according buckets is:

P (2 ≤ a ≤ 23) ≈ 5
5 + 5 + 2.58

≈ 39.75%

P (23 ≤ a ≤ 34) ≈ 5
12.58

≈ 39.75%

P (34 ≤ a ≤ 50) ≈ 2.58
12.58

≈ 20.5%

The probability that a value of an interval is part of the base
relation is computed by the number of elements divided by the
width of the interval. So the probabilities, that a single value is a
result of the initial query compute as:

P (a = 20) ≈ 5
12.58

· 1
23 − 2 + 1

≈ 1.8%

P (a = 30) ≈ 5
12.58

· 1
34 − 23 + 1

≈ 3.3%

P (a = 40) ≈ 2.58
12.58

· 1
50 − 34 + 1

≈ 1.2%

1The ‘limit sample’ clause is one example of a SQL extension for sampling
and is part of the FRAQL query language [12].

Having these equations the cumulative probabilityP (a ≤ x) can
derived. Now it is just necessary to generate £ve uniform dis-
tributed random numbers and choose the according values from
the cumulative probability function as results. For example let
the £rst generated number be 0.47. The according attribute value
is 25, because ofP (â = 25) ≈ 22 · 0.018 + 2 · 0.033 = 0.462.
So this can be returned as the approximate result to the user.

The generalized formula of the above exemplarily outlined
computation is shown in Eq. 6:

P (a = â)

≈ kmin

count (amin ≤ a ≤ amax) (vimin − amin + 1)
,

if amin ≤ â ≤ vimin .

P (a = â)

≈ f(vi)
count (amin ≤ a ≤ amax) (vimin − vimin−1 + 1)

,

if vimin−1 ≤ â ≤ vimin .

P (a = â)

≈ kmax

count (amin ≤ a ≤ amax) (amax − vimax + 1)
,

if vimax ≤ â ≤ amax.

(6)

The cumulative form is obtained by adding the probabilities for
all values less or equal the searched parameter. With this func-
tion sample values can quickly be estimated. These values are
not necessarily part of the underlying base relations. They only
serve to sketch the real data distribution.

If more than one attribute is selected for the result set, one-
dimensional histograms are not longer suf£cient. This is shown
by a small example. Let the rows in the base table be like shown
in Tbl. 3: Relying on one-dimensional histograms would lead to

a b

1 0
1 0
0 1
0 1

Table 3: Example values of two attributesa andb

the estimation, that for each attributea andb there are the same
number of 1 and 0. For that reason sample rows like〈1, 0〉 would
have the same probability to be generated as〈1, 1〉, which is not
part of the base relation. Here the use of the multi-dimensional
histograms mentioned above is necessary.

4 Future Directions

For the future work we suggest that work can be carried in the
following directions. The £rst point is to check the quality of
the estimated results with different data base sizes and histogram
types. If necessary the error in estimations should be brought
down and the con£dence level of the results returned should be
increased. If possible the histogram type and the number of



buckets should be derivable from the desired con£dence level
and the amount of data in the base relations.

Next the area of multi-dimensional histograms should be ex-
amined in detail.

This work is the part of our larger work on developing an ef-
£cient incremental data analysis engine so we believe that there
should be an implementation such that it satis£es the working on
the varied type of the real data. Here the aspect of not restricting
the analysis only to numerical data has to be considered.

5 Conclusions

In this paper a method was discussed, which provides fast ap-
proximate answers to the aggregate and sample queries. To
achieve this aim the demand for exactness was relaxed. Nev-
ertheless, the results should feature a certain quality level. The
approach is to construct histograms over the attributes of the base
relations. The size of these histograms can be chosen, so that
they can £t in the main memory. There is a set of equations
given, which calculate results to aggregate and sample queries
just by using these histograms without accessing the base rela-
tions.
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