
Minimal Invasive Monitoring

Daniel Mahrenholz
University of Magdeburg

Universitätsplatz 2
D-39106 Magdeburg, Germany

mahrenho@ivs.cs.uni-magdeburg.de

Abstract

Using software monitors to measure embedded or real-
time applications is a difficult task because of their impact
on code size and execution time. Our approach for a mini-
mal invasive monitor shows how to minimize the impact by
adapting the monitor to the monitoring task. We present
techniques to reduce the monitor overhead to the most nec-
essary.

1. Introduction

Besides simulation and analytical modeling, measure-
ment is one of the three evaluation techniques available for
software systems. To measure the properties of a software
system you have to know about its internal state. To make
this internal state visible to the outside world monitoring
systems are used.

There are three types of monitoring systems: software,
hardware and hybrid systems. Software monitors are soft-
ware extensions to an existing system. In contrast hardware
monitors log the states of the different hardware buses to
track the software’s behavior. Hybrid monitors take advan-
tage of both methods - they use software extensions to gen-
erate special signal patterns on the observed buses and ex-
ternal hardware devices to recognize and record the events.
Both approaches have their pros and cons. Software moni-
tors on the one hand are cheap and highly flexible but they
perturb the monitored system. Hardware monitors on the
other hand do not necessary interfere with the target sys-
tem. But these systems highly depend on the target pro-
cessor and thus are expensive and inflexible compared to a
software monitor.

So why should we use software sensors, especially in a
real time environment? We can not measure whether a sys-
tem is real time capable or not, i.e. if it will meet its dead-
lines in the future. This is subject to the system design. But
we can assist in making statements about the time behavior

of the system. If an algorithm is real time capable it is not
said that it works with a particularly hardware. It can fail
only because the hardware is to slow to run the algorithm in
a given time. But it can also fail because the software moni-
tor introduces to much overhead. So the software extension
have to be as small as possible. There is another reason
why a monitor extension should be minimal. If you try to
monitor systems used in the deeply embedded market, it is
likely to find systems with very limited memory resources.
Memory sizes of 8 KB are not unusual. And if you consider
an operating system with an application with a total size of
5 KB there are only 3 KB left. So the monitoring system
has to be minimal to fit into the system at all. Even if the
remaining memory is too small to store a reasonable large
buffer to keep the measured values, the software monitor
can provide an external hardware monitor with information
about the internal behavior of the system.

2. The Nature of Software Sensors

2.1. Trigger a Sensor

Before a sensor can log an event it has to be triggered.
As we focus on object-oriented languages we also take ad-
vantage of their possibilities. We have two types of sensors,
block and expression level sensors. Expression level sen-
sors are inserted to log the pass of a single code position or
the state of a variable at this point. Block level sensors log
entries into and/or exits from basic code blocks (e.g. func-
tions).

Expression level sensors are simple calls to a logging
function inserted as expression statements or by extending
simple expressions to compound expressions. Block level
sensors in contrast are inserted as variables instantiating a
class with a scope local to the block. As they were class in-
stances they have to be initialized at the beginning of their
scope und destructed at the end. So it is guaranteed that
the class constructor is called whenever the block is entered



and the destructor when it is left. So we are able to monitor
entries and exits to a block separately.

By using an optimizing compiler these sensors can be
fully inlined so that even the block level sensors do not need
extra space in the data segment for the class instance.

2.2. Sensor Parts

Sensors consist of three parts: measurement, data storage
and sensor management. The measurement part collects the
data of interest. The storage part decides how and where to
store the gathered information. At last the management part
connects the sensor with the monitoring system. Mostly
these three parts can not be fully separated – especially the
collection and storage of interesting data often go hand in
hand. But logically they do different jobs, so take a closer
look on them.

The primary job of a sensor is to collect data about the
system’s current state. The system behavior can then later
be described in terms of state changes by combining the
data collected by all the sensors during the system’s run-
time. So it is clear that we focus on logging state changes
in the system – something that influences the placement and
design of sensors, that both can be optimized.

The measured values have to be made visible to the out-
side world. To do so there are two possibilities. First to
store them to an external device every time they get mea-
sured or second to cache them in the local memory and to
store them later as a whole. We use the second one as it
involves the smallest communication overhead. If we are
going to use an external hardware monitor, we switch to the
first possibility. In this case we write to a special memory
location and catch all writes with the external monitor.

The management part of a sensor interacts with the soft-
ware monitor to synchronize its work with the other sensors
especially when writing into the global trace buffer. It also
ensures that the global trace buffer does not overrun.

3. Sensor Optimization

3.1. An Example

Figure 1 shows a small part of the PURE1 [8] class hier-
archy. As an example we show the steps needed to monitor
the context switches of a PURE system. In the example sys-
tem we have two possible reasons for a context switch, a di-
rect or indirect2 call to Coroutine::resume (coopera-
tive switch) or a preemptive switch caused by a timer event.

1PUREis an object-oriented operating system family that mainly targets
the area of deeply embedded systems. It is a development of our group.

2With indirect calls we mean all calls to functions that itself calls the
target function (in)directly.

TimeSlice

... ...

...

SchemeSchemer

Entrant

Activity

Actor

Coroutine

Figure 1. Partial PURE class hierarchy

Our goal now is to measure the time spend in the differ-
ent classes in order to find inefficient implementations and
to verify the expected runtime behavior. We do this by in-
serting block level sensors into all methods callingCorou-
tine::resume directly or indirectly. Block level sensors
are triggered on all entries to or exits from a function.

To do this instrumentation we use the aspect-oriented
programming techniques[7] provided by our aspect weaver
suite. The specification of such an instrumentation is quite
simple. We first place a block level sensor inCorou-
tine::resume . Second we search for all call paths lead-
ing to this function and instrument the passed functions ac-
cordingly. This is done by recursively searching for func-
tions that are already instrumented. The result of the instru-
mentation process are the instrumented source code and a
description of the planned sensors. In a second step this de-
scription is used to generate the source code for all sensors.
This separation enables us to optimize the sensors without
rerunning the whole instrumentation process.

Figure 2 depicts the placement and relationship of the
inserted sensors. If not specified in the instrumentation pro-
cess all sensors are full-featured and log directly into the
global event trace.

3.2. Optimization

The basic instrumentation and sensor generation process
provides a ready-to-run system. But this basic instrumen-
tation can be optimized in several ways. First we can strip
down the sensors so that they only store significant values
that could not be reconstructed afterwards and remove all
functional parts that are never used. If we know (e.g. from
a previous run) that a sensor is not used, we can remove it
completely. Second we can move parts of the sensors out of
the critical execution path to minimize their impact on the



... ...

...

Figure 2. Initial sensor placement and call
graph

measured execution time.
Another optimization possibility that comes into mind

is whether to inline the sensor code or to call it as a func-
tion. Inlined sensors have smaller execution times. Sensors
called as functions instead have a smaller code size but need
extra execution time to prepare and perform the call. An-
other disadvantage is that they can hardly be optimized by
the following techniques. So we focus an inlined sensors
that can highly be optimized for size and speed. It is even
possible so make them smaller than their counterparts.

3.3. Strip Redundant Sensor Information

The first and easiest way to optimize a sensor is the
removal of redundant storage operations. As we use the
JUWEL format[2] as our native output format to support var-
ious external applications we have to provide a complete
JUWEL style record for every event occurring. But we are
not forced to fill in each field. We only have to ensure that
all fields can be filled out afterwards (e.g. by an external
postprocessor). So we can leave out all fields that are not
used, have not changed since the last event or that can be
reconstructed by the help of other information (e.g. the call
graph of the instrumented system).

The removal of redundant storage operations can easily
be done by hand during the instrumentation process or af-
terwards. In our case we do not need theParameter or
ProcessorID field so we configure them out. A second
thing we do not need are the boundary checks that protect
us from overrunning the global trace buffer. As we have
enough memory to hold a fairly large trace buffer we can
also configure these sensor parts out. If the available mem-

Field Size (Bit)
EventID 32
Timestamp 64
ProcessorID 32
ThreadID 32
Parameter 32

Table 1. JUWEL event record

ory is tight we have to check the buffer regularly to save it
to an external storage if it gets to full. Normally this check
is done every time we log an event. This behavior is safe but
far from optimal so it is subject to the second optimization
strategy.

The usage of the remaining three fields can be further
optimized. First we minimize storage of the actual thread
ID. We analyse the whole system to find all write accesses
to the memory location that holds the ID of the currently
running thread (life pointer) and set the first sensor before
and thereafter to store its value. All other sensors need not
to store it, because the thread ID can be reconstructed. If the
ID is not encapsulated into a class the automated analysis
can get very tricky. In this cases it is often better to specify
all position were it changes manually.

Next we take a look at the time stamp field. It is 64 bit
wide to support high resolution timers (e.g. processor cycle
counters). Suppose we have a fast processor running at a
clock speed of 500 MHz the lower 32 bit of the counter will
overrun after 8.6 seconds. So in most cases the lower 32 bit
are enough to recognize each overrun and so to reconstruct
the exact time stamp value. This saves a memory access
operation on 32 bit processors and even more on smaller
hardware. For all processor types and clock speeds specific
optimizations can be found in the same way.

The last interesting field is the event ID. Figure 2 depicts
the part of the system’s call graph containing our sensors.
Figure 3 shows the call graph in a second version denot-
ing split and join points. It is clear that there are several
dependencies between these sensors. For instance, if you
pass sensor 8 the next three have to be 5, 3 and 1. It is also
clear that by knowing these dependencies some sensor IDs
can be guessed afterwards so they do not need to be stored.
In the example we have only instrumented nodes. But it
is also possible to have nodes without sensors. They are
treated like nodes with unidentified sensors. If a call is only
performed under certain conditions we assume a call to a
virtual sink node if the condition is not met.

Our goal now is to find a minimal set of identified sensors
so that we are able to identify each possible path through the
graph. The difficulty of finding such a set increases with the
number of sensors, split und join points and soon reaches a
level at which it can not be properly done by hand so an



split point

join point

1

3 4

5 6 7

8 9 10 11

12

2

Figure 3. Call graph

automated system is needed (see section 4.2).
To test a set of sensor configurations you can use the

following method. First go through the list of split and join
points and remove the selected node temporary from the
graph. Second test if all paths in the resulting sub-graphs
that lead to the selected node (for a join point) or from it (for
a split point) can be clearly identified by the chosen sensor
configuration. If the resulting sub-graphs include other split
or join points apply this method recursively.

3.4. Move Sensor Parts

After we have stripped down the sensors as much as pos-
sible we now try to move necessary parts to other locations
to reduce the sensors’ impact on time critical code sections.
Another goal is to concentrate sensor parts so that their time
utilization can be measured using our own techniques. This
can help to reduce the measurement error caused by the sen-
sors. Two questions remain: which parts can be moved and
where shall they be placed?

Nearly all parts of a sensor can be moved. But the man-
agement part is particularly suitable because it has little to
do with the measurement in principle. It synchronizes the
sensor with others when accessing the global trace buffer,
prevents the trace buffer from overruns and so on. Espe-
cially synchronization with other sensors can result in an
unpredictable time behavior. The boundary checks “only”
costs us time. Both things are not very welcome to per-
form a highly precise measurement. Our solution to this
problem is relatively simple. We extend the sensor with a
small buffer to keep the measured values and transfer them
later into the global trace buffer. This requires additional
memory space for the buffers and processor cycles for the
temporary writes. But if it is possible to move the manage-

ment parts of all sensors in a measured region to the out-
ermost sensors (leaves in figure 3) or completely out of the
region you get a highly precise measurement because all
sensors are as small as possible and have predictable execu-
tion times.

Second there is the question where to insert the removed
parts of a sensor. The best solution is to insert the manage-
ment and transfer code into the class destructor of the outer-
most sensor or into the program code that is called whenever
the program exits. Our little example works with this solu-
tion but in most cases it will not. The crucial problem in
this situation are loops around sensors that causes the sen-
sor to be triggered multiple times. If there is a small upper
limit for the loop count this problem can be solved by as-
signing a larger buffer to the sensor to cache several events.
But this is not satisfying at all. So our general solution to
this problem is to insert the management code into the last
sensor that would be passed before the loop closes.

There is another crucial point when using cached values.
Depending on how sensor parts are moved around, the order
of events in the resulting log file can be changed. In gen-
eral this is not a problem because events can be reordered
with their time-stamps. But if you use a slow timer several
events may have the same time-stamp. In this case it helps
to consult the call graph to order the events according to
their unique ID.

At last another possibility to move sensor parts to has
to be mentioned. From our point it is hypothetical because
we never tried it. But if you are using an external hardware
monitor, parts of or even the whole sensor can be moved
to the device connected to the hardware monitor. If you
move sensors partly you get an hybrid system. The remain-
ing sensor parts would then perform write operations that
the hardware monitor would recognize. The moved parts
would then store the values caught by the hardware mon-
itor. If you move the whole sensor the monitored system
would get instrumented with zero size sensors (e.g. debug-
ging symbols). This would enable the hardware debugger
to trigger the external sensor code. But without access to
the target system’s memory it would be really difficult to
monitor things like the currently running thread.

4. Automated Instrumentation and Sensor Op-
timization

After the discussion of the general optimization strate-
gies we now discuss how this can be automated.

4.1. Using AOP

In general monitoring has nothing to do with the actual
tasks of a system. It is a technical requirement to the system
that is only needed temporary. And even if it is needed, the



first question always is where and not how to monitor some-
things. Speaking in terms of the aspect-oriented program-
ming (AOP)[1, 5] this is called anaspectof the system. So
we model a monitoring aspect and merge it with the system.
This is calledaspect weaving. Figure 4 shows the whole
instrumentation process. Theaspect programalso allows
us to specify special sensor configurations and strategies to
move sensor parts in the system.

aspect
weaver

sensor
description

aspect
program

C++
code

sensor
code

instrumented
system

sensor code
generation

sensor
optimization

instrumented
C++ code

Figure 4. Instrumentation process using AOP

4.2. Identify Redundant Sensor Information

As explained in section 3.3 the removal of redundant
storage operations can not very well be automated. For
all fields but the sensor identifier and time-stamp the prob-
lem is to find all instructions that write to the memory posi-
tions storing the values the sensors uses to fill out the event
records. For a well structured system that respects the prin-
ciple of data encapsulation this can be done easily. But C++
does not force you to do so. So this could result in a highly
expensive data flow analysis.

The removal of sensor identifiers can be fully automated.
The best way is to use the brute force method that tests all
possible settings. The disadvantage of this approach is the
exponential complexity of the solution. With some algo-
rithmic optimizations and lots of computational power it is
possible to repress the problem but you will always find a
number of sensors that is to large. You could for instance
try to find call chains without split and join points and re-
move the identifiers from the inner nodes because they are
clearly identified by the first and last sensor of the chain.
This also reduces the total number of sensors to optimize.
You can also try to find solutions for different numbers of
identified sensors using a bisection method. If this does not
help you can use heuristics to minimize the number. You

get a sufficient solution by identifying all sensor before and
behind split and join points. But it is unlikely that you get a
minimal solution this way.

4.3. Moving Sensor Parts

The basic strategy to move necessary sensor parts is to
search the call graph (which is a directed graph) for all pos-
sible paths and to delay execution of parts of sensors found
along these paths as long as possible. This works in three
phases. First we identify entry, exit, join and split points of
the system. Second we reduce the call graph to the parts
containing our sensors. And third we move the code parts
along the paths.

Entry and exit points are defined by the system. Entry
points are nodes were a new control flow starts. These are
the starting point (function) of a system, interrupt service
functions and the very first function called after thread or
process creation. Exit points are those function that end a
control flow. These are functions that jump out of the sys-
tem, destruct a thread or process or do things like stopping
the processor forever. Join points are nodes that have more
than one incoming edge, split points respectively have more
than one outgoing edge. The initial entry and exit points
have to be specified for the target system.

To reduce the call graph to the interesting sub-graph we
first remove all isolated nodes and sub-graphs that do not
contain any sensors. Thereafter we look for all nodes that
have no sensors and only incoming or outgoing edges. They
lie on the border of the call graph and were never passed on
a path between two sensors. We apply these steps as long
as we can reduce the graph. If we remove a node marked
as an entry or exit point the connected nodes become new
entry respectively exit points.

The last phase requires a cycle-free graph so we first
search for all cycles that itself do not contain other cycles. If
we find one we separate it from the rest, duplicate the nodes
that belong to both parts and remove all edges leading to the
last node of the cycle. We assume the node where the cycle
close the first node of the cycle. Figure 5 should give an
idea of this process. As the result we get a set of cycle free
call graph fragments.

For each fragment we search all contained sensors and
move their management parts contrary to the edge direction
along the path. We then place the new management code in
the furthermost sensor possible. If we pass a node marked
as join point along the path we have to follow all edges lead-
ing to this node. This means we possibly have to insert the
moved management code into several sensors. But this is
not a problem because all these sensors share a special man-
agement code that is capable of storing a group of cached
event records at once. Simultaneously we change the sen-
sor types. The sensor we remove the code from is changed



cut

duplicated

Figure 5. Removal of call graph cycles

to use a temporary memory for its values. The sensor we
place the code in is changed to store the values of the first
sensor’s temporary memory. Figure 6 shows where sensor
parts were removed and inserted. But keep in mind that not
the actual code is moved. Its functionality is now adduced
by another piece of code at a different place.

Figure 6. Movement of sensor parts

4.4. Using Monitoring Results

Remember the example in section 3.1. There you can
see that we inserted several sensors into functions that lie
on paths leading toCoroutine::resume . We did this
because we do not know which paths will be used. But we
will know it if we run the instrumented system and analyse
the resulting trace log. Although a sensor is not used ac-
cording to the trace log it is not guaranteed to be redundant.
But it gives an idea of what parts of the system were really
used. So this assists in removing redundant sensors com-
pletely. This has to be done before all other optimizations
because it can strongly influence them. And if you decide to
remove all unused sensors this can be done fully automated.

Someone could argue that finding unused sensors could
also be done by an static analysis. This is true in many
cases. But there are also some difficulties connected to this

approach. There are several code sections (e.g. interrupt
handlers) that are only reached in reaction to an external
event or when processing certain inputs. So you have to
consider all these external factors in the analysis process.

5. Results

We discussed a lot of optimization possibilities in the last
sections. Now we take a look at what this means in practice.
Our testbed is a Pentium 133 MHz with 60 ns EDO-RAM.
This is not a typical embedded platform but it provides a
clock cycle counter to run a highly precise measurement.

We start with the example of section 3.1. We added 12
sensors and the runtime extensions for the software monitor.
All sensors are at function level and generate an event on
entry and exit of the function. So the sensors generate 24
unique events. Table 2 shows the initial sizes for the system.

Part Code Data Sum
communication interface 778 104 882
event generation/storage 479 28 507
sensors 2496 0 2496
overall 3753 132 3885

Table 2. Initial sizes (in byte) of the monitoring
extensions

In section 3.3 we discussed how to remove redundant
parts of the sensors. Table 3 shows the savings we could get
from leaving out different sensor parts. We can not remove
all fields from all sensors. But the sum of all sensors drops
from 2496 to 426 bytes (on average 35.5 bytes per event).

Parts Code saving (byte)
boundary checks 32
optional parameter 10
processor ID 10
thread ID 6
event ID 9
time-stamp (upper 32 bit) 5

Table 3. Savings from removal of redundant
sensor parts (normal sensors)

Our next step in section 3.4 was to delay execution of
sensor functions as long as possible. In this step we also
changed the basic behavior of the sensors. We moved the
management part away from most sensors and modified
them to cache their values in a fixed memory location. This
reduces the size of a full sensor to 53 bytes. In contrast



all sensors that now get the job to store the cached values
grow by 10 bytes at each case. The new caching sensors
can also be stripped down. Table 4 shows the savings we
can achieve. The minimal sensor we can create now is 7
bytes small. The code size needed for all sensors now drops
to 344 bytes which means an average sensor size of 28.7
bytes.

Parts Code saving (Byte)
optional parameter 10
process ID 10
thread ID 10
event ID 10
time-stamp (upper 32 bit) 6

Table 4. Savings from removal of redundant
sensor parts (caching sensors)

With the complete set of optimization described in the
previous sections, we were able to reduce the overhead in-
troduced by the software sensors from 2496 down to 344
bytes. This is a reduction of about 86%. Table 5 gives an
overview of the final results.

Two things have to be mentioned at this point. First the
effects of the optimization on the sensors’ execution times
and second the cache effects that appear. The execution
time of a sensor depends much more on the target hardware
as its size does. In our test case a full functional, not op-
timized sensor had an average execution time of 60 cycles
(450 ns). The minimal stripped down sensor took 20 cy-
cles (150 ns) on average. At last the smallest possible sen-
sor took 8 cycles (60 ns) to run. This is exactly the access
time of the memory we used. So it seems that our sensors
are more affected by the speed of the memory than by the
speed of the processor. As we mentioned before you have
to take care of cache effects. When triggering a sensor for
the first time its execution time can be 2 (largest sensor) to
10 (smallest sensor) times higher as it is later. There is al-
most nothing you can do about this because it is impossible
in most cases to put the sensor code and data into the cache
without affecting other parts of the system.

6 Related Work

The monitoring of software systems using hardware,
software and hybrid systems[12] has been studied for years.
Many works dealt with the techniques used to instrument a
system at compile or runtime in various use cases. Dynamic
instrumentation systems such as Paradyn[3], KernInst[10]
or the system presented in [4] insert the instrumentation
code into running binaries. Other binary rewriters like

not opti- stripped fully op-
mized down timized

Full sensor 104 104 53
Minimal sensor 104 32 7
Example (sensors) 2496 426 344
Example (per event) 104 35.5 28.7

Table 5. Summary: possible sensor sizes
(byte)

EEL[6] are used to instrument a system before it is started.
They all share the same problems. To call the sensor code
they have to replace code sections to perform a call or trap
to it. And without access to the source code they can not
gain much knowledge about the internal state of the moni-
tored system. That’s why we focus on source code instru-
mentation like the TAU[9] or JEWEL[2] system. We differ
from them in two ways. First that we use an aspect-oriented
approach to perform the instrumentation (s. section 3) as
well as transformation networks[7] to model and specify the
monitoring task, special sensor requirements etc. And sec-
ond that we use generated software sensors to adapt them to
the monitoring task to be as small and fast as possible and
to ensure a predictable runtime if necessary. [11] discusses
the effects of software sensors on distributed real-time sys-
tem and how to deal with them. They present a method for
deterministic observations of real-time systems.

7. Conclusion

Software monitors are a cheap and highly flexible way to
monitor the behavior of software. But their perturbation of
the target system makes them unsuitable or even impossible
for embedded and real time systems.

By using aspect-oriented programming techniques to de-
scribe monitoring tasks and system internals and a set of au-
tomated optimization tools we make it possible to adapt the
monitor to the task. Our work shows that the combination
of a fine grained instrumentation with several optimization
strategies can generate a unique software monitor minimal
in size and execution time. This enables us to perform soft-
ware (supported) monitoring in areas dominated by hard-
ware solutions.

References

[1] K. Czarnecki. Generative Programming: Principles
and Techniques of Software Engeneering Based on Au-
tomated Configuration and Fragment-Based Compo-
nent Models. PhD thesis, Technische Universit¨at Ill-
menau, Germany, 1998.



[2] Martin Gergeleit. Automatic Instrumentation of
Object-Oriented Programs. Technical report, German
National Research Center for Information Technol-
ogy, 1994.

[3] Jeffrey K. Hollingsworth et al. MDL: A Language
and Compiler for Dynamic Program Instrumenta-
tion. Technical report, Computer Sciences Depart-
ment, University of Maryland; Computer Sciences
Department, University of Wisconsin, May 1997.

[4] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon
Cargille. Dynamic program instrumentation for scal-
able performance tools. InProceeding of Scalable
High Performance Computing Conference, 1994.

[5] Gregor Kiczales et al.Aspect-Oriented Programming.
Technical report, Xerox Palo Alto Research Center,
1997.

[6] J.R. Larus and E. Schnarr. EEL: Machine-independent
executable editing. InACM SIGPLAN 1995 Confer-
ence on Programming Language Design and Imple-
mentation (PLDI), June 1995.

[7] Daniel Mahrenholz. Aspektorientierte Realisierung
eines generischen Systemmonitors. Master’s thesis,
University of Magdeburg, Germany, 2000.

[8] F. Schön, W. Schr¨oder-Preikschat, O. Spinczyk, and
U. Spinczyk.Design Rationale of thePUREObject-
Oriented Embedded Operating System. In Proceeding
of the International IFIP WG 10.3/WG 10.5 Workshop
on Distributed and Parallel Embedded Systems (Dipes
’98), volume 5/6, Paderborn, Germany, October 1998.
ISBN 0-7923-8614-0.

[9] S. Shende, A. D. Malony, J. Cuny, K. Lindlan,
P. Beckman, and S. Karmesin. Portable profiling and
tracing for parallel scientific applications using C++.
In Proceedings of ACM SIGMETRICS Symposium on
Parallel and Distributed Tools (SPDT ’98), August
1995.

[10] Ariel Tamches and Barton P. Miller.Fine-Grained Dy-
namic Instrumentation of Commodity Operation Sys-
tem Kernels. Technical report, Computer Sciences De-
partment, University of Wisconsin, 1998.

[11] Henrik Thane. Design for deterministic monitoring
of distributed real-time systems. Technical report,
Mälardalen Real-Time Research Centre, 2000.

[12] J. Tsai, Y. Bi, S. Yang, and R. Smuth.Distributed
Real-Time Systems, Monitoring, Visualization, De-
bugging and Analysis. Wiley, 1996.


